×

Pulsatile flow of blood using a modified second-grade fluid model. (English) Zbl 1145.76477

Summary: We study the unsteady pulsatile flow of blood in an artery, where the effects of body acceleration are included. The blood is modeled as a modified second-grade fluid where the viscosity and the normal stress coefficients depend on the shear rate. It is assumed that the blood near the wall behaves as a Newtonian fluid, and in the core as a non-Newtonian fluid. This phenomenon is also known as the Fahraeus-Lindqvist effect. The equations are made dimensionless and solved numerically.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
76A05 Non-Newtonian fluids

Software:

FEATFLOW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues (1993), Springer-Verlag: Springer-Verlag New York
[2] Humphrey, J. D.; Delange, S. L., An Introduction to Biomechanics (2004), Springer Science + Business Media, Inc.: Springer Science + Business Media, Inc. New York · Zbl 1067.92011
[3] Eringen, A. C., Continuum theory of dense rigid suspension, Rheol. Acta, 30, 23-32 (1991) · Zbl 0716.76012
[4] Eringen, A. C., A continuum theory of dense suspensions, Z. Angew Math. Phys. (ZAMP), 56, 529-547 (2005) · Zbl 1065.76190
[5] Ariman, T.; Turk, M. A.; Sylvester, N. D., Microcontinuum fluid mechanics—A review, Int. J. Engng. Sci., 11, 905-930 (1973) · Zbl 0259.76001
[6] Turk, M. A.; Sylvester, N. D.; Ariman, T., On pulsatile blood flow, Trans. Soc. Rheol., 17, 1-21 (1973) · Zbl 0356.76080
[7] Debnath, L., On a microcontinuum model of pulsatile blood flow, Acta Mech., 24, 165-177 (1976) · Zbl 0345.76059
[8] Ahmadi, G., A continuum theory of blood-flow, Scientia Sinica, 24, 1465-1474 (1981) · Zbl 0478.76139
[9] Rajagopal, K. R.; Tao, L., Mechanics of Mixtures (1995), World Scientific Publishing Co., Ltd.: World Scientific Publishing Co., Ltd. New Jersey · Zbl 0941.74500
[10] Usha, R.; Prema, K., Pulsatile flow of a particle-fluid suspension model of blood under periodic body acceleration, Z. Angew. Math. Phys. (ZAMP), 50, 175-192 (1999) · Zbl 0958.76098
[11] Anand, M.; Rajagopal, K. R., A shear-thinning viscoelastic fluid model for describing the flow of blood, Int. J. Cardiovasc. Med. Sci., 4, 59-68 (2004)
[12] Anand, M.; Rajagopal, K.; Rajagopal, K. R., A model for the formation and lysis of blood clots, Pathophysiol. Haemost. Thromb., 34, 109-120 (2005)
[13] Hron, J.; Malek, J.; Turek, S., A numerical investigation of flows of shear-thinning fluids with applications to blood rheology, Int. J. Numer. Meth. Fluids, 32, 863-879 (2000) · Zbl 0974.76046
[14] Thurston, G. B., Viscoelasticity of human blood, Biophys. J., 12, 1205-1217 (1972)
[15] Chien, S.; King, R. G.; Skalak, R.; Usami, S.; Copley, A. L., Viscoelastic properties of human blood and red cell suspension, Biorheology, 12, 341-346 (1975)
[16] Anand, M.; Rajagopal, K. R., A mathematical model to describe the change in the constitutive character of blood flow due to platelet activation, C. R. Mecanique, 330, 557-562 (2002) · Zbl 1177.76474
[17] Yeleswarapu, K. K.; Kamaneva, M. V.; Rajagopal, K. R.; Antaki, J. F., The flow of blood in tubes: Theory and experiment, Mech. Res. Comm., 25, 257-262 (1998) · Zbl 0962.76648
[18] K.K. Yeleswarapu, Evaluation of continuum models for characterizing the constitutive behavior of blood. Ph.D. Dissertation, University of Pittsburgh. Pittsburgh, 1996; K.K. Yeleswarapu, Evaluation of continuum models for characterizing the constitutive behavior of blood. Ph.D. Dissertation, University of Pittsburgh. Pittsburgh, 1996
[19] Jones, R. T., Blood flow, Annu. Rev. Fluid Mech., 1, 223-244 (1969)
[20] Ku, D. N., Blood flow in arteries, Annu. Rev. Fluid Mech., 29, 399-434 (1997)
[21] Popel, A. S.; Johnson, P. C., Microcirculation and hemorheology, Annu. Rev. Fluid Mech, 37, 43-69 (2005) · Zbl 1117.76078
[22] Fahraeus, R.; Lindqvist, T., The viscosity of blood in narrow capillary tubes, Amer. J. Physiol., 96, 562-568 (1931)
[23] Kang, C. K.; Eringen, A. C., The effect of microstructure on the rheological properties of blood, Bull. Math. Biol., 38, 135-159 (1976) · Zbl 0326.92009
[24] Segre, G.; Silberberg, A., Behavior of macroscopic rigid spheres in Poiseuille flow. Part 1, J. Fluid Mech., 14, 115-135 (1962) · Zbl 0118.43203
[25] Segre, G.; Silberberg, A., Behavior of macroscopic rigid spheres in Poiseuille flow. Part 2, J. Fluid Mech., 14, 136-157 (1962) · Zbl 0118.43203
[26] Pal, R., Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes, J. Biomech., 36, 981-989 (2003)
[27] Majhi, S. N.; Usha, L., Modeling the Fahraeus-Lindqvist effect through fluids of differential type, Int. J. Engng. Sci., 26, 503-508 (1988) · Zbl 0637.76139
[28] Majhi, S. N.; Nair, V. R., Pulsatile flow of third grade fluids under body acceleration—Modeling blood flow, Int. J. Engng. Sci., 32, 839-846 (1994) · Zbl 0925.76975
[29] Haldar, K.; Andresson, H. I., Two-layered model of blood flow through stenosed arteries, Acta Mech., 117, 221-228 (1996) · Zbl 0868.76106
[30] Mandal, P. K., An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis, Internat. J. Non-Linear Mech., 40, 151-164 (2005) · Zbl 1349.76943
[31] Mandal, P. K., Effect of body acceleration on unsteady pulsatile flow of non-newtonian fluid through a stenosed artery, Appl. Math. Comput., 189, 1, 766-779 (2007) · Zbl 1125.76079
[32] Chatzizisis, Y. S.; Giannoglou, G. D., Pulsatile flow: A critical modulator of the natural history of atherosclerosis, Medical Hypotheses, 67, 338-340 (2006)
[33] Misra, J. C.; Sahu, B. K., Flow through blood vessels under the action of a periodic acceleration field, Comput. Math. Appl., 16, 993-1016 (1988) · Zbl 0657.76099
[34] El-Shahed, M., Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl. Math. Comput., 138, 479-488 (2003) · Zbl 1027.76067
[35] Chaturani, P.; Palanisamy, V., Casson fluid model for pulsatile flow of blood under periodic body acceleration, Biorheology, 27, 619-630 (1990)
[36] Chaturani, P.; Palanisamy, V., Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration, Biorheology, 27, 747-758 (1990)
[37] Sankar, D. S.; Hemalatha, K., Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries—A mathematical model, Internat. J. Non-Linear Mech., 41, 979-990 (2006) · Zbl 1160.76446
[38] Sankar, D. S.; Hemalatha, K., Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries—A mathematical model, Appl. Math. Model., 31, 8, 1497-1517 (2007) · Zbl 1130.76091
[39] Sun, N.; De Kee, D., Simple shear, hysteresis and yield stress in biofluids, Canad. J. Chem. Engng., 79, 36-41 (2000)
[40] Macosko, C. W., Rheology: Principles, Measurements and Applications (1994), Wiley-VCH Inc.: Wiley-VCH Inc. New York
[41] Larson, R. G., The Structure and Rheology of Complex Fluids (1999), Oxford University Press: Oxford University Press New York
[42] Man, C. S.; Sun, Q. K., On the significance of normal stress effects in the flow of glaciers, J. Glaciology, 33, 268-273 (1987)
[43] Man, C. S., Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity, Arch. Ration. Mech. Anal., 119, 35-57 (1992) · Zbl 0757.76001
[44] Rivlin, R. S.; Ericksen, J. L., Stress deformation relations for isotropic materials, J. Ration. Mech. Anal., 4, 323-425 (1955) · Zbl 0064.42004
[45] Dunn, J. E.; Fosdick, R. L., Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal., 56, 191-252 (1974) · Zbl 0324.76001
[46] Dunn, J. E.; Rajagopal, K. R., Fluids of differential type: Critical review and thermodynamic analysis, Int. J. Engng. Sci., 33, 689-729 (1995) · Zbl 0899.76062
[47] Gupta, G.; Massoudi, M., Flow of a generalized second grade fluid between heated plates, Acta Mech., 99, 21-33 (1993) · Zbl 0774.76005
[48] Massoudi, M.; Phuoc, T. X., Fully developed flow of a modified second grade fluid with temperature dependent viscosity, Acta Mech., 150, 23-37 (2001) · Zbl 0993.76005
[49] Massoudi, M.; Phuoc, T. X., Flow of a generalized second grade non-Newtonian fluid with variable viscosity, Contin. Mech. Thermodyn., 16, 529-538 (2004) · Zbl 1158.76304
[50] M. Massoudi, A. Vaidya, On some generalizations of the second grade fluid model, Nonlinear Anal. RWA (2007), in press (doi:10.1016/j.nonrwa.2007.02.008); M. Massoudi, A. Vaidya, On some generalizations of the second grade fluid model, Nonlinear Anal. RWA (2007), in press (doi:10.1016/j.nonrwa.2007.02.008) · Zbl 1140.76306
[51] Chakravarty, S.; Datta, A.; Mandal, P. K., Analysis of nonlinear blood flow in a stenosed flexible artery, Int. J. Engng. Sci., 33, 1821-1837 (1995) · Zbl 0901.92013
[52] Chaturani, P.; Wassf, I. A.S., Blood flow with body acceleration forces, Int. J. Engng. Sci., 33, 1807-1820 (1995) · Zbl 0901.92014
[53] Rajagopal, K. R., A note on unsteady unidirectional flows of a non-Newtonian fluid, Internat. J. Non-Linear Mech., 17, 369-373 (1982) · Zbl 0527.76003
[54] Rajagopal, K. R.; Sciubba, E., Pulsating flow of a non-Newtonian fluid, Math. Comput. Simulation, 26, 276-288 (1984) · Zbl 0534.76005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.