zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pulsatile flow of blood using a modified second-grade fluid model. (English) Zbl 1145.76477
Summary: We study the unsteady pulsatile flow of blood in an artery, where the effects of body acceleration are included. The blood is modeled as a modified second-grade fluid where the viscosity and the normal stress coefficients depend on the shear rate. It is assumed that the blood near the wall behaves as a Newtonian fluid, and in the core as a non-Newtonian fluid. This phenomenon is also known as the Fahraeus-Lindqvist effect. The equations are made dimensionless and solved numerically.

76Z05Physiological flows
92C35Physiological flows
76A05Non-Newtonian fluids
Full Text: DOI
[1] Fung, Y. C.: Biomechanics: mechanical properties of living tissues, (1993)
[2] Humphrey, J. D.; Delange, S. L.: An introduction to biomechanics, (2004) · Zbl 1067.92011
[3] Eringen, A. C.: Continuum theory of dense rigid suspension, Rheol. acta 30, 23-32 (1991) · Zbl 0716.76012 · doi:10.1007/BF00366791
[4] Eringen, A. C.: A continuum theory of dense suspensions, Z. angew math. Phys. (ZAMP) 56, 529-547 (2005) · Zbl 1065.76190 · doi:10.1007/s00033-005-3119-2
[5] Ariman, T.; Turk, M. A.; Sylvester, N. D.: Microcontinuum fluid mechanics--A review, Int. J. Engng. sci. 11, 905-930 (1973) · Zbl 0259.76001 · doi:10.1016/0020-7225(73)90038-4
[6] Turk, M. A.; Sylvester, N. D.; Ariman, T.: On pulsatile blood flow, Trans. soc. Rheol. 17, 1-21 (1973) · Zbl 0356.76080
[7] Debnath, L.: On a microcontinuum model of pulsatile blood flow, Acta mech. 24, 165-177 (1976) · Zbl 0345.76059 · doi:10.1007/BF01190368
[8] Ahmadi, G.: A continuum theory of blood-flow, Scientia sinica 24, 1465-1474 (1981) · Zbl 0478.76139
[9] Rajagopal, K. R.; Tao, L.: Mechanics of mixtures, (1995) · Zbl 0941.74500
[10] Usha, R.; Prema, K.: Pulsatile flow of a particle--fluid suspension model of blood under periodic body acceleration, Z. angew. Math. phys. (ZAMP) 50, 175-192 (1999) · Zbl 0958.76098 · doi:10.1007/s000330050145
[11] Anand, M.; Rajagopal, K. R.: A shear-thinning viscoelastic fluid model for describing the flow of blood, Int. J. Cardiovasc. med. Sci. 4, 59-68 (2004)
[12] Anand, M.; Rajagopal, K.; Rajagopal, K. R.: A model for the formation and lysis of blood clots, Pathophysiol. haemost. Thromb. 34, 109-120 (2005)
[13] Hron, J.; Malek, J.; Turek, S.: A numerical investigation of flows of shear-thinning fluids with applications to blood rheology, Int. J. Numer. meth. Fluids 32, 863-879 (2000) · Zbl 0974.76046 · doi:10.1002/(SICI)1097-0363(20000415)32:7<863::AID-FLD997>3.0.CO;2-P
[14] Thurston, G. B.: Viscoelasticity of human blood, Biophys. J. 12, 1205-1217 (1972)
[15] Chien, S.; King, R. G.; Skalak, R.; Usami, S.; Copley, A. L.: Viscoelastic properties of human blood and red cell suspension, Biorheology 12, 341-346 (1975)
[16] Anand, M.; Rajagopal, K. R.: A mathematical model to describe the change in the constitutive character of blood flow due to platelet activation, C. R. Mecanique 330, 557-562 (2002) · Zbl 1177.76474 · doi:10.1016/S1631-0721(02)01501-2
[17] Yeleswarapu, K. K.; Kamaneva, M. V.; Rajagopal, K. R.; Antaki, J. F.: The flow of blood in tubes: theory and experiment, Mech. res. Comm. 25, 257-262 (1998) · Zbl 0962.76648 · doi:10.1016/S0093-6413(98)00036-6
[18] K.K. Yeleswarapu, Evaluation of continuum models for characterizing the constitutive behavior of blood. Ph.D. Dissertation, University of Pittsburgh. Pittsburgh, 1996
[19] Jones, R. T.: Blood flow, Annu. rev. Fluid mech. 1, 223-244 (1969)
[20] Ku, D. N.: Blood flow in arteries, Annu. rev. Fluid mech. 29, 399-434 (1997)
[21] Popel, A. S.; Johnson, P. C.: Microcirculation and hemorheology, Annu. rev. Fluid mech 37, 43-69 (2005) · Zbl 1117.76078 · doi:10.1146/annurev.fluid.37.042604.133933
[22] Fahraeus, R.; Lindqvist, T.: The viscosity of blood in narrow capillary tubes, Amer. J. Physiol. 96, 562-568 (1931)
[23] Kang, C. K.; Eringen, A. C.: The effect of microstructure on the rheological properties of blood, Bull. math. Biol. 38, 135-159 (1976) · Zbl 0326.92009
[24] Segre, G.; Silberberg, A.: Behavior of macroscopic rigid spheres in Poiseuille flow. Part 1, J. fluid mech. 14, 115-135 (1962) · Zbl 0118.43203
[25] Segre, G.; Silberberg, A.: Behavior of macroscopic rigid spheres in Poiseuille flow. Part 2, J. fluid mech. 14, 136-157 (1962) · Zbl 0118.43203
[26] Pal, R.: Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes, J. biomech. 36, 981-989 (2003)
[27] Majhi, S. N.; Usha, L.: Modeling the fahraeus--lindqvist effect through fluids of differential type, Int. J. Engng. sci. 26, 503-508 (1988) · Zbl 0637.76139 · doi:10.1016/0020-7225(88)90008-0
[28] Majhi, S. N.; Nair, V. R.: Pulsatile flow of third grade fluids under body acceleration--modeling blood flow, Int. J. Engng. sci. 32, 839-846 (1994) · Zbl 0925.76975 · doi:10.1016/0020-7225(94)90064-7
[29] Haldar, K.; Andresson, H. I.: Two-layered model of blood flow through stenosed arteries, Acta mech. 117, 221-228 (1996) · Zbl 0868.76106 · doi:10.1007/BF01181050
[30] Mandal, P. K.: An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis, Internat. J. Non-linear mech. 40, 151-164 (2005) · Zbl 05138577
[31] Mandal, P. K.: Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery, Appl. math. Comput. 189, No. 1, 766-779 (2007) · Zbl 1125.76079 · doi:10.1016/j.amc.2006.11.139
[32] Chatzizisis, Y. S.; Giannoglou, G. D.: Pulsatile flow: A critical modulator of the natural history of atherosclerosis, Medical hypotheses 67, 338-340 (2006)
[33] Misra, J. C.; Sahu, B. K.: Flow through blood vessels under the action of a periodic acceleration field, Comput. math. Appl. 16, 993-1016 (1988) · Zbl 0657.76099 · doi:10.1016/0898-1221(88)90256-8
[34] El-Shahed, M.: Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl. math. Comput. 138, 479-488 (2003) · Zbl 1027.76067 · doi:10.1016/S0096-3003(02)00164-9
[35] Chaturani, P.; Palanisamy, V.: Casson fluid model for pulsatile flow of blood under periodic body acceleration, Biorheology 27, 619-630 (1990)
[36] Chaturani, P.; Palanisamy, V.: Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration, Biorheology 27, 747-758 (1990)
[37] Sankar, D. S.; Hemalatha, K.: Pulsatile flow of Herschel--Bulkley fluid through stenosed arteries--A mathematical model, Internat. J. Non-linear mech. 41, 979-990 (2006) · Zbl 1160.76446 · doi:10.1016/j.ijnonlinmec.2006.02.007
[38] Sankar, D. S.; Hemalatha, K.: Pulsatile flow of Herschel--Bulkley fluid through catheterized arteries--A mathematical model, Appl. math. Model. 31, No. 8, 1497-1517 (2007) · Zbl 1130.76091 · doi:10.1016/j.apm.2006.04.012
[39] Sun, N.; De Kee, D.: Simple shear, hysteresis and yield stress in biofluids, Canad. J. Chem. engng. 79, 36-41 (2000)
[40] Macosko, C. W.: Rheology: principles, measurements and applications, (1994)
[41] Larson, R. G.: The structure and rheology of complex fluids, (1999)
[42] Man, C. S.; Sun, Q. K.: On the significance of normal stress effects in the flow of glaciers, J. glaciology 33, 268-273 (1987)
[43] Man, C. S.: Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity, Arch. ration. Mech. anal. 119, 35-57 (1992) · Zbl 0757.76001 · doi:10.1007/BF00376009
[44] Rivlin, R. S.; Ericksen, J. L.: Stress deformation relations for isotropic materials, J. ration. Mech. anal. 4, 323-425 (1955) · Zbl 0064.42004
[45] Dunn, J. E.; Fosdick, R. L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade, Arch. ration. Mech. anal. 56, 191-252 (1974) · Zbl 0324.76001 · doi:10.1007/BF00280970
[46] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis, Int. J. Engng. sci. 33, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[47] Gupta, G.; Massoudi, M.: Flow of a generalized second grade fluid between heated plates, Acta mech. 99, 21-33 (1993) · Zbl 0774.76005 · doi:10.1007/BF01177232
[48] Massoudi, M.; Phuoc, T. X.: Fully developed flow of a modified second grade fluid with temperature dependent viscosity, Acta mech. 150, 23-37 (2001) · Zbl 0993.76005 · doi:10.1007/BF01178542
[49] Massoudi, M.; Phuoc, T. X.: Flow of a generalized second grade non-Newtonian fluid with variable viscosity, Contin. mech. Thermodyn. 16, 529-538 (2004) · Zbl 1158.76304 · doi:10.1007/s00161-004-0178-0
[50] M. Massoudi, A. Vaidya, On some generalizations of the second grade fluid model, Nonlinear Anal. RWA (2007), in press (doi:10.1016/j.nonrwa.2007.02.008) · Zbl 1140.76306
[51] Chakravarty, S.; Datta, A.; Mandal, P. K.: Analysis of nonlinear blood flow in a stenosed flexible artery, Int. J. Engng. sci. 33, 1821-1837 (1995) · Zbl 0901.92013 · doi:10.1016/0020-7225(95)00022-P
[52] Chaturani, P.; Wassf, I. A. S.: Blood flow with body acceleration forces, Int. J. Engng. sci. 33, 1807-1820 (1995) · Zbl 0901.92014 · doi:10.1016/0020-7225(95)00027-U
[53] Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid, Internat. J. Non-linear mech. 17, 369-373 (1982) · Zbl 0527.76003 · doi:10.1016/0020-7462(82)90006-3
[54] Rajagopal, K. R.; Sciubba, E.: Pulsating flow of a non-Newtonian fluid, Math. comput. Simulation 26, 276-288 (1984) · Zbl 0534.76005 · doi:10.1016/0378-4754(84)90064-8