zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quantum effects in classical systems having complex energy. (English) Zbl 1145.81416
Summary: On the basis of extensive numerical studies it is argued that there are strong analogies between the probabilistic behavior of quantum systems defined by Hermitian Hamiltonians and the deterministic behavior of classical mechanical systems extended into the complex domain. Three models are examined: the quartic double-well potential $V(x) = x^{4} - 5x^{2}$, the cubic potential $V(x)={\frac{1}{2}} x^2-gx^3 $, and the periodic potential $V(x) = -\cos x$. For the quartic potential a wave packet that is initially localized in one side of the double-well can tunnel to the other side. Complex solutions to the classical equations of motion exhibit a remarkably analogous behavior. Furthermore, classical solutions come in two varieties, which resemble the even-parity and odd-parity quantum-mechanical bound states. For the cubic potential, a quantum wave packet that is initially in the quadratic portion of the potential near the origin will tunnel through the barrier and give rise to a probability current that flows out to infinity. The complex solutions to the corresponding classical equations of motion exhibit strongly analogous behavior. For the periodic potential a quantum particle whose energy lies between -1 and 1 can tunnel repeatedly between adjacent classically allowed regions and thus execute a localized random walk as it hops from region to region. Moreover, if the energy of the quantum particle lies in a conduction band, then the particle delocalizes and drifts freely through the periodic potential. A classical particle having complex energy executes a qualitatively analogous local random walk, and there exists a narrow energy band for which the classical particle becomes delocalized and moves freely through the potential.

81V05Strong interaction, including quantum chromodynamics
81T15Perturbative methods of renormalization (quantum theory)
Full Text: DOI arXiv