zbMATH — the first resource for mathematics

Kepler problem in a constant-curvature space. (English. Russian original) Zbl 1145.81443
Theor. Math. Phys. 155, No. 2, 780-788 (2008); translation from Teor. Mat. Fiz. 155, No. 2, 317-326 (2008).
Summary: We algebraically derive the spectrum of a hydrogen atom in a space with constant curvature.

81V45 Atomic physics
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
70F15 Celestial mechanics
Full Text: DOI arXiv
[1] E. Schrödinger, Proc. Roy Irish Acad. Sect. A, 46, 9–16 (1940).
[2] L. M. Nieto, H. C. Rosu, and M. Santander, Modern Phys. Lett. A, 14, 2463–2469 (1999); arXiv:quant-ph/9911010v3 (1999). · doi:10.1142/S021773239900256X
[3] V. Fock, Z. Phys., 98, 145–154 (1935). · doi:10.1007/BF01336904
[4] W. Pauli Jr., Z. Phys., 36, 336–363 (1926). · doi:10.1007/BF01450175
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.