Pronko, G. P. Kepler problem in a constant-curvature space. (English. Russian original) Zbl 1145.81443 Theor. Math. Phys. 155, No. 2, 780-788 (2008); translation from Teor. Mat. Fiz. 155, No. 2, 317-326 (2008). Summary: We algebraically derive the spectrum of a hydrogen atom in a space with constant curvature. Cited in 1 Document MSC: 81V45 Atomic physics 70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 70F15 Celestial mechanics Keywords:dynamical system; constant-curvature space; Kepler problem PDF BibTeX XML Cite \textit{G. P. Pronko}, Theor. Math. Phys. 155, No. 2, 780--788 (2008; Zbl 1145.81443); translation from Teor. Mat. Fiz. 155, No. 2, 317--326 (2008) Full Text: DOI arXiv References: [1] E. Schrödinger, Proc. Roy Irish Acad. Sect. A, 46, 9–16 (1940). [2] L. M. Nieto, H. C. Rosu, and M. Santander, Modern Phys. Lett. A, 14, 2463–2469 (1999); arXiv:quant-ph/9911010v3 (1999). · doi:10.1142/S021773239900256X [3] V. Fock, Z. Phys., 98, 145–154 (1935). · doi:10.1007/BF01336904 [4] W. Pauli Jr., Z. Phys., 36, 336–363 (1926). · doi:10.1007/BF01450175 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.