zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extensive Rényi statistics from non-extensive entropy. (English) Zbl 1145.82303
Summary: We show that starting with either the non-extensive Tsallis entropy in Wang’s formalism or the extensive Rényi entropy, it is possible to construct equilibrium non-Gibbs canonical distribution functions which satisfy the fundamental equations of thermodynamics. The statistical mechanics with Tsallis entropy does not satisfy the zeroth law of thermodynamics at dynamical and statistical independence request, whereas the extensive Rényi statistics fulfills all requirements of equilibrium thermodynamics in the microcanonical ensemble. Transformation formulas between Tsallis statistics in Wang representation and Rényi statistics are presented. The one-particle distribution function in Rényi statistics for a classical ideal gas at finite particle number has a power-law tail for large momenta.

82B03Foundations of equilibrium statistical mechanics
82-02Research monographs (statistical mechanics)
94A17Measures of information, entropy
Full Text: DOI
[1] Gibbs, J. W.: Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics. (1902) · Zbl 33.0708.01
[2] Balescu, R.: Equilibrium and nonequilibrium statistical mechanics. (1975) · Zbl 0984.82500
[3] Tsallis, C.: Braz. J. Phys.. 29, 1 (1999)
[4] Tsallis, C.; Mendes, R. S.; Plastino, A. R.: Physica A. 261, 534 (1998)
[5] Abe, S.; Martínez, S.; Pennini, F.; Plastino, A.: Phys. lett. A. 281, 126 (2001)
[6] Wang, Q. A.: Eur. phys. J. B. 26, 357 (2002)
[7] Abe, S.: Phys. rev. E. 63, 061105 (2001)
[8] Wang, Q. A.; Le Méhauté, A.: J. math. Phys.. 43, 5079 (2002)
[9] Abe, S.: Physica D. 193, 218 (2004)
[10] Wang, Q. A.: Chaos solitons fractals. 12, 1431 (2001)
[11] Jaynes, T.: W.k.fordstatistical physics. Statistical physics (1963) · Zbl 0126.24702
[12] Gross, D. H. E.: Physica A. 305, 99 (2002)
[13] Wehrl, A.: Rev. mod. Phys.. 50, 221 (1978)
[14] Vives, E.; Planes, A.: Phys. rev. Lett.. 88, 020601 (2002)
[15] Botet, R.; Płoszajczak, M.; Gudima, K. K.; Parvan, A. S.; Toneev, V. D.: Physica A. 344, 403 (2004)
[16] Martínez, S.; Pennini, F.; Plastino, A.: Physica A. 295, 416 (2001) · Zbl 0978.82504
[17] Abe, S.: Physica A. 305, 62 (2002)
[18] Wang, Q. A.:
[19] Prato, D.: Phys. lett. A. 203, 165 (1995)
[20] Huang, K.: Statistical mechanics. (1963)
[21] Parvan, A. S.; Toneev, V. D.; Płoszajczak, M.: Nucl. phys. A. 676, 409 (2000)
[22] Lavagno, A.: Phys. lett. A. 301, 13 (2002)
[23] Abramowitz, M.; Stegun, I.: Handbook of mathematics functions. Nat. bur. Stand. appl. Math. ser. 55 (1965) · Zbl 0065.43202