zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bose-Einstein condensates in superlattices. (English) Zbl 1145.82309
Summary: We consider the Gross-Pitaevskii (GP) equation in the presence of periodic and quasi-periodic superlattices to study cigar-shaped Bose-Einstein condensates (BECs) in such potentials. We examine spatially extended wavefunctions in the form of modulated amplitude waves (MAWs). With a coherent structure ansatz, we derive amplitude equations describing the evolution of spatially modulated states of the BEC. We then apply second-order multiple scale perturbation theory to study harmonic resonances with respect to a single lattice substructure as well as ultrasubharmonic resonances that result from interactions of both substructures of the superlattice. In each case, we determine the resulting system’s equilibria, which represent spatially periodic solutions, and subsequently examine the stability of the corresponding wavefunctions by direct simulations of the GP equation, identifying them as typically stable solutions of the model. We then study subharmonic resonances using Hamiltonian perturbation theory, tracing robust spatio-temporally periodic patterns.

MSC:
82B10Quantum equilibrium statistical mechanics (general)
37J40Perturbations, normal forms, small divisors, KAM theory, Arnol’d diffusion
81V45Applications of quantum theory to atomic physics
WorldCat.org
Full Text: DOI