×

Time-delay systems: an overview of some recent advances and open problems. (English) Zbl 1145.93302

Summary: After presenting some motivations for the study of time-delay system, this paper recalls modifications (models, stability, structure) arising from the presence of the delay phenomenon. A brief overview of some control approaches is then provided, the sliding mode and time-delay controls in particular. Lastly, some open problems are discussed: the constructive use of the delayed inputs, the digital implementation of distributed delays, the control via the delay, and the handling of information related to the delay value.

MSC:

93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C23 Control/observation systems governed by functional-differential equations
93B12 Variable structure systems
34K20 Stability theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[4] Aernouts, W.; Roose, D.; Sepulchre, R., Delayed control of a Moore-Greitzer axial compressor model, International Journal of Bifurcation and Chaos, 10, 2, 1157-1164 (2000)
[6] Ailon, A.; Gil, M. I., Stability analysis of a rigid robot with output-based controller and time-delay, Systems and Control Letters, 40, 1, 31-35 (2000) · Zbl 0977.93056
[9] Artstein, Z., Linear systems with delayed controlsA reduction, IEEE Transactions on Automatic Control, 27, 4, 869-879 (1982) · Zbl 0486.93011
[10] Åström, K. J.; Hang, C. C.; Lim, B. C., A new Smith predictor for controlling a process with an integrator and long deadtime, IEEE Transactions on Automatic Control, 39, 2, 343-345 (1994) · Zbl 0800.93163
[11] Banks, H. T.; Kappel, F., Spline approximations for functional differential equations, Journal of Differential Equations, 34, 496-522 (1979) · Zbl 0422.34074
[12] Banks, S. P., Nonlinear delay systems, Lie algebras and Lyapunov transformations, IMA Journal of Mathematical Control and Information, 19, 1-2, 59-72 (2002) · Zbl 1112.93328
[13] Bartholoméüs, A.; Dambrine, M.; Richard, J. P., Bounded domains and constrained control of linear time-delays systems, JESA, European Journal of Automatic Systems, 31, 6, 1001-1014 (1997)
[14] Battle, C.; Miralles, A., On the approximation of delay elements by feedback, Automatica, 36, 659-664 (2000) · Zbl 0973.93019
[15] Beghi, A.; Lepschy, A.; Viaro, U., Approximating delay elements by feedback, IEEE Transactions on Circuits and Systems, 44, 824-828 (1997)
[19] Bellman, R.; Cooke, K. L., Differential difference equations (1963), Academic Press: Academic Press New York · Zbl 0115.30102
[20] Bellman, R.; Cooke, K. L., On the computational solution of a class of functional differential equations, Journal of Mathematical Analysis and Applications, 12, 495-500 (1965) · Zbl 0138.32103
[22] Blanchini, F.; Ryan, E. P., A Razumikhin-type lemma for functional differential equations with application to adaptive control, Automatica, 35, 5, 809-818 (1999) · Zbl 0934.93038
[23] Bonnet, C.; Partington, J. R., Stabilization of fractional exponential systems including delays, Kybernetika, 37, 3, 345-354 (2001) · Zbl 1265.93211
[24] Bonnet, C.; Partington, J. R.; Sorine, M., Robust control and tracking of a delay system with discontinuous nonlinearity in the feedback, International Journal of Control, 72, 15, 1354-1364 (1999) · Zbl 0960.93042
[25] Bonnet, C.; Partington, J. R.; Sorine, M., Robust stabilization of a delay system with saturating actuator or sensor, International Journal of Robust and Nonlinear Control, 10, 579-590 (2000) · Zbl 0973.93045
[29] Bushnell, L., Editorial: Networks and control, IEEE Control System Magazine, 21, 1, 22-99 (2001), (special section on networks and control)
[30] Byrnes, C. I.; Spong, M. W.; Tarn, T. J., A several complex variables approach to feedback stabilization of linear neutral delay-differential systems, Mathematical Systems Theory, 17, 97-133 (1984) · Zbl 0539.93064
[31] Cao, Y. Y.; Lam, J., \(H_∞\) control of uncertain markovian jump systems with time delay, IEEE Transactions on Automatic Control, 45, 1, 77-83 (2000) · Zbl 0983.93075
[32] Chang, P. H.; Lee, J. W.; Park, S. H., Time delay observerA robust observer for nonlinear plants, ASME Journal of Dynamic Systems Measurement and Control, 119, 521-527 (1997) · Zbl 0900.93047
[34] Chen, J.; Latchman, H. A., Frequency sweeping tests for stability independent of delay, IEEE Transactions on Automatic Control, 40, 9, 1640-1645 (1995) · Zbl 0834.93044
[35] Cheres, E.; Gutman, S.; Palmor, Z. J., Stabilization of uncertain dynamic systems including state delay, IEEE Transactions on Automatic Control, 34, 11, 1199-1203 (1989) · Zbl 0693.93059
[37] Choi, H. H.; Chung, M. J., Memoryless \(H_∞\) controller design for linear systems with delayed state and control, Automatica, 31, 6, 917-919 (1995) · Zbl 0829.93021
[38] Choi, H. H.; Chung, M. J., Observer-based \(H_∞\) controller design for state delayed linear systems, Automatica, 32, 7, 1073-1075 (1996) · Zbl 0850.93215
[39] Choi, H. H.; Chung, M. J., Robust observer-based \(H_∞\) controller design for linear uncertain time-delay systems, Automatica, 33, 9, 1749-1752 (1997) · Zbl 1422.93062
[40] Choi, S. B.; Hedrick, J. K., An observer-based controller design method for improving air/fuel characterization of spark ignition engines, IEEE Transactions on Control Systems Technology, 6, 3, 325-334 (1998)
[41] Conte, G.; Perdon, A. M., The disturbance decoupling problem for systems over a ring, SIAM Journal on Control and Optimization, 33, 3, 750-764 (1995) · Zbl 0831.93011
[42] Conte, G.; Perdon, A. M., Non-interacting control problems for delay-differential systems via systems over rings, JESA, European Journal on Automatic Systems, 31, 6, 1059-1076 (1997)
[45] Dambrine, M.; Richard, J. P.; Borne, P., Feedback control of time-delay systems with bounded control and state, Mathematical Problems in Engineering, 1, 77-87 (1995) · Zbl 0918.93040
[46] Darouach, M., Linear functional observers for systems with delays in state variables, IEEE Transactions on Automatic Control, 46, 3, 491-496 (2001) · Zbl 1056.93503
[47] Darouach, M.; Pierrot, P.; Richard, E., Design of reduced-order observers without internal delays, IEEE Transactions on Automatic Control, 44, 9, 1711-1713 (1999) · Zbl 0958.93015
[48] Datko, R., A paradigm of ill-posedness with respect to time delays, IEEE Transactions on Automatic Control, 43, 7, 964-967 (1998) · Zbl 0968.93067
[49] De Santis, A.; Germani, A.; Jetto, L., Approximation of the algebraic Riccati equation in the Hilbert space of Hilbert-Schmidt operators, SIAM Journal on Control and Optimization, 4, 847-874 (1993) · Zbl 0785.93049
[50] Delfour, M.; Mitter, S., Controllability, observability and optimal feedback control of affine, hereditary, differential systems, SIAM Journal on Control and Optimization, 10, 298-328 (1972) · Zbl 0242.93011
[54] Diop, S.; Kolmanovsky, I.; Moraal, P.; vanNieuwstadt, M., Preserving stability/performance when facing an unknown time delay, Control Engineering Practice, 9, 1319-1325 (2001)
[55] Dugard, L.; Verriest, E. I., Stability and control of time-delay systems, Lecture notes in control and information sciences, Vol. 228 (1997), Springer: Springer Berlin
[56] Dym, H.; Georgiou, T. T.; Smith, M. C., Explicit formulas for optimally robust controllers for delay systems, IEEE Transactions on Automatic Control, 40, 4, 656-669 (1995) · Zbl 0830.93027
[57] El-Khazaly, R., Variable structure robust control of uncertain time-delay systems, Automatica, 34, 3, 327-332 (1998) · Zbl 0965.93025
[58] Elsgolts, L. E.; Norkin, S. B., Introduction to the theory and application of differential equations with deviating arguments, Mathematics in science and engineering, Vol. 105 (1973), Academic Press: Academic Press New York · Zbl 0287.34073
[59] Engelborghs, K.; Dambrine, M.; Roose, D., Limitations of a class of stabilization methods for delay systems, IEEE Transactions on Automatic Control, 46, 2, 336-339 (2001) · Zbl 1056.93607
[60] Fairmar, F. W.; Kumar, A., Delay-less observers for systems with delay, IEEE Transactions on Automatic Control, 31, 3, 258-259 (1986) · Zbl 0597.93010
[62] Fiagbedzi, Y. A.; Pearson, A. E., Feedback stabilization of linear autonomous time lag systems, IEEE Transactions on Automatic Control, 31, 847-855 (1986) · Zbl 0601.93045
[65] Foda, S. G.; Mahmoud, M. S., Adaptive stabilization of delay differential systems with unknown uncertainty bounds, International Journal on Control, 71, 2, 259-275 (1998) · Zbl 0965.93093
[66] Foias, C.; Özbay, H.; Tannenbaum, A., Robust control of infinite dimensional systems: A frequency domain method, Lecture notes in control and information sciences, Vol. 209 (1996), Springer: Springer Berlin
[67] Fridman, E., New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, System and Control Letters, 43, 4, 309-319 (2001) · Zbl 0974.93028
[68] Fridman, E.; Fridman, L. M.; Shustin, E. I., Steady modes in a discontinuous control system with time delay and periodic disturbances, ASME Journal of Dynamic Systems, Measurements and Control, 122, 4, 732-737 (2000)
[69] Fridman, E.; Shaked, U., A descriptor system approach to \(H_∞\) control of linear time-delay systems, IEEE Transactions on Automatic Control, 47, 2, 253-270 (2002) · Zbl 1364.93209
[73] Gao, J.; Huang, B.; Wang, Z., LMI-based robust \(H_∞\) control of uncertain linear jump systems with time-delays, Automatica, 37, 1141-1146 (2001) · Zbl 0989.93029
[74] Ge, J. H.; Frank, P. M.; Lin, C. F., Robust \(H_∞\) state feedback control for linear systems with state delay and parameter uncertainty, Automatica, 32, 8, 1183-1185 (1996) · Zbl 0850.93216
[75] Georgiou, T. T.; Smith, M. C., Robust stabilization in the gap metricController design for distributed plants, IEEE Transactions on Automatic Control, 37, 1133-1143 (1992) · Zbl 0764.93033
[76] Georgiou, T. T.; Smith, M. C., Robustness analysis of nonlinear feedback systemsAn input-output approach, IEEE Transactions on Automatic Control, 42, 9, 1200-1221 (1997) · Zbl 0889.93043
[77] Georgiou, T. T.; Smith, M. C., Bézout factors and \(l^1\)-optimal controllers for delay systems using a two-parameter compensator scheme, IEEE Transactions on Automatic Control, 44, 8, 1512-1521 (1999) · Zbl 0959.93052
[80] Gibson, J. S., Linear quadratic optimal control of hereditary differential systemsInfinite-dimensional Riccati equations and numerical approximation, SIAM Journal on Control and Optimization, 31, 95-139 (1983) · Zbl 0557.49017
[81] Glader, C.; Hognas, G.; Mäkilä, P. M.; Toivonen, H. T., Approximation of delay systemsA case study, International Journal of Control, 53, 2, 369-390 (1991) · Zbl 0745.93016
[83] Glover, K.; Lam, J.; Partington, J. R., Rational approximation of a class of infinite dimensional system ISingular value of Hankel operator, Mathematics of Control Circulation and Systems, 3, 325-344 (1990) · Zbl 0727.41020
[85] Glüsing-Lüerßen, H., A behavioral approach to delay-differential systems, SIAM Journal on Control and Optimization, 35, 2, 480-499 (1997) · Zbl 0876.93022
[87] Gorecki, H.; Fuksa, S.; Grabowski, P.; Korytowski, A., Analysis and synthesis of time delay systems (1989), Wiley: Wiley New York · Zbl 0695.93002
[88] Gouaisbaut, F.; Dambrine, M.; Richard, J. P., Robust control of systems with variable delayA sliding mode control design via LMIs, System and Control Letters, 46, 4, 219-230 (2002) · Zbl 0994.93004
[92] Goubet-Bartholomeus, A.; Dambrine, M.; Richard, J. P., Stability of perturbed systems with time-varying delay, Systems and Control Letters, 31, 155-163 (1997) · Zbl 0901.93047
[93] Gu, K., A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems, International Journal on Robust and Nonlinear Control, 9, 1-14 (1999) · Zbl 0923.93046
[94] Gu, G.; Khargonekar, P. P.; Lee, E. B., Approximation of infinite-dimensional systems, IEEE Transactions on Automatic Control, 34, 6, 832-852 (1992)
[95] Gu, K., Discretization schemes for Lyapunov-Krasovskii functionals in time delay systems, Kybernetica, 37, 4, 479-504 (2001) · Zbl 1265.93176
[97] Gu, K.; Niculescu, S. I., Further remarks on additional dynamics in various model transformations of linear delay systems, IEEE Transactions on Automatic Control, 46, 3, 497-500 (2001) · Zbl 1056.93511
[98] Hale, J. K.; Verduyn-Lunel, S., Strong stabilization of neutral functional differential equations, IMA Journal of Mathematical Control Information, 19, 1-2, 5-24 (2002) · Zbl 1005.93026
[99] Hale, J. K.; Verduyn-Lunel, S. M., Introduction to functional differential equations, Applied Mathematical Sciences, Vol. 99 (1993), Springer: Springer New York · Zbl 0787.34002
[100] Hennet, J.-C.; Tarbouriech, S., Stability conditions of constrained delay systems via positive invariance, International Journal of Robust and Nonlinear Control, 8, 3, 265-278 (1998) · Zbl 0914.93048
[101] Hirai, K.; Satoh, Y., Stability of a system with variable time-delay, IEEE Transactions on Automatic Control, 25, 3, 552-554 (1980) · Zbl 0429.93040
[102] Hotzel, R.; Fliess, M., On linear systems with a fractional derivationIntroductory theory and examples, Mathematics and Computers in Simulation, 45, 3-4, 385-395 (1998) · Zbl 1017.93508
[104] Huang, W., Generalization of Lyapunov’s theorem in a linear delay system, Journal of Mathematical Analysis and Applications, 142, 83-94 (1989) · Zbl 0705.34084
[105] Huang, Y. P.; Zhou, K., Robust stability of uncertain time delay systems, IEEE Transactions on Automatic Control, 45, 11, 2169-2173 (2000) · Zbl 0989.93066
[106] Infante, E. F.; Castelan, W. B., A Lyapunov functional for a matrix difference-differential equation, Journal of Differential Equations, 29, 439-451 (1978) · Zbl 0354.34049
[107] Ionescu, V.; Niculescu, S. I.; Dion, J. M.; Dugard, L.; Li, H., Generalized Popov theory applied to state-delayed systems, Automatica, 37, 1, 91-97 (2001) · Zbl 0965.93083
[108] Ionescu, V.; Oara, C.; Weiss, M., Generalized Riccati theory (1998), Wiley: Wiley New York
[110] Izmailov, R., Analysis and optimization of feedback control algorithms for data transfers in high-speed networks, SIAM Journal of Control and Optimization, 34, 1767-1780 (1996) · Zbl 0861.90055
[112] Jankovic, M., Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems, IEEE Transactions on Automatic Control, 46, 7, 1048-1060 (2001) · Zbl 1023.93056
[113] Jeong, H. S.; Lee, C. W., Time delay control with state feedback for azimuth motion of the frictionless positioning device, IEEE-ASME Transactions on Mechatronics, 2, 3, 161-168 (1997)
[116] Kato, J., On Liapunov-Razumikhin type theorems for functional differential equations, The Mathematical Society of Japan, Kobe, Funkcialaj Ekvacioj, 16, 3, 225-239 (1973) · Zbl 0321.34056
[118] Khan, B. Z.; Lehman, B., Setpoint PI controllers for systems with large normalized dead time, IEEE Transactions on Control Systems Technology, 4, 4, 459-466 (1996)
[120] Kharitonov, V. L.; Melchior-Aguliar, D., On delay-dependent stability conditions, System and Control Letters, 40, 1, 71-76 (2000) · Zbl 0977.93072
[122] Kim, W. S.; Hannaford, B.; Bejczy, A. K., Force-reflection and shared compliant control in operating telemanipulators with time-delay, IEEE Transactions on Robotics and Automation, 8, 2, 176-185 (1992)
[123] Kojima, A.; Uchida, K.; Shimemura, E.; Ishijima, S., Robust stabilization of a system with delays in control, IEEE Transactions on Automatic Control, 39, 8, 1694-1698 (1994) · Zbl 0800.93985
[124] Kolmanovskii, V. B., Stability of some nonlinear functional differential equations, Journal of Nonlinear Differential Equations, 2, 185-198 (1995) · Zbl 0824.34081
[125] Kolmanovskii, V. B.; Maizenberg, T. L.; Richard, J. P., Mean square stability of difference equations with a stochastic delay, Nonlinear Analysis, 52, 3, 795-804 (2003) · Zbl 1029.39005
[126] Kolmanovskii, V. B.; Myshkis, A., Applied theory of functional differential equations, Mathematics and Applications, Vol. 85 (1992), Kluwer Academy: Kluwer Academy Dordrecht
[127] Kolmanovskii, V. B.; Myshkis, A., Introduction to the theory and applications of functional differential equations (1999), Kluwer Academy: Kluwer Academy Dordrecht · Zbl 0917.34001
[129] Kolmanovskii, V. B.; Niculescu, S. I.; Richard, J. P., On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems, International Journal on Control, 72, 4, 374-384 (1999) · Zbl 0952.34057
[130] Kolmanovskii, V. B.; Nosov, V. R., Stability of functional differential equations (1986), Academic Press: Academic Press London · Zbl 0593.34070
[131] Kolmanovskii, V. B.; Richard, J. P., Stability of some linear systems with delay, IEEE Transactions on Automatic Control, 44, 5, 984-989 (1999) · Zbl 0964.34065
[132] Kolmanovskii, V. B.; Shaikhet, L. E., Control of systems with aftereffect, Transaction of Mathematical monographs, Vol. 157 (1996), American Mathematical Society: American Mathematical Society Providence, RI
[135] Krtolica, R.; Özguner, Ü.; Chan, H.; Göktas, H.; Winkelman, J.; Liubakka, M., Stability of linear feedback systems with random communication delays, International Journal of Control, 59, 4, 925-953 (1991) · Zbl 0812.93073
[136] Kwon, H. W.; Pearson, A. E., Feedback stabilization of linear systems with delayed control, IEEE Transactions on Automatic Control, 25, 2, 266-269 (1980) · Zbl 0438.93055
[140] Lehman, B., The influence of delays when averaging slow and fast oscillating systemsOverview, IMA Journal of Mathematical Control Information, 19, 1-2, 201-216 (2002)
[143] Lewis, R. M., Control-delayed system properties via an ordinary model, International Journal of Control, 30, 3, 477-490 (1979) · Zbl 0411.93026
[144] Leyva-Ramos, J.; Pearson, A. E., An asymptotic modal observer for linear autonomous time lag systems, IEEE Transactions on Automatic Control, 40, 1291-1294 (1995) · Zbl 0825.93084
[148] Loiseau, J. J., Invariant factors assignment for a class of time-delay systems, Kybernetika, 37, 3, 265-276 (2001) · Zbl 1265.93062
[149] Loiseau, J. J.; Brethé, D., 2-D exact model matching with stability, the structural approach, Bulletin of the Polish Academy of Science—Technical Sciences, 45, 2, 309-317 (1997) · Zbl 0895.93005
[150] Loiseau, J. J.; Brethé, D., The use of 2-D systems theory for the control of time-delay systems, JESA, European Journal of Automatic Systems, 31, 6, 1043-1058 (1997)
[151] Loiseau, J. J.; Brethé, D., An effective algorithm for finite spectrum assignment of single-input systems with delays, Mathematics and Computers in Simulation, 45, 3-4, 339-348 (1998) · Zbl 1017.93506
[154] Louisell, J., Delay differential systems with time-varying delayNew directions for stability theory, Kybernetika, 37, 3, 239-252 (2001)
[155] Luck, R.; Ray, A., An observer-based compensator for distributed delays, Automatica, 26, 5, 903-908 (1990) · Zbl 0701.93055
[157] Luo, N.; De la Sen, M., State feedback sliding mode control of a class of uncertain time-delay systems, IEE Proceedings-D, 140, 4, 261-274 (1993) · Zbl 0786.93081
[158] MacDonald, N., Biological delay systems: Linear stability theory, Cambridge Studies in Mathematics Biology, Vol. 8 (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0669.92001
[162] Mäkilä, P. M.; Partington, J. R., Laguerre and Kautz shift approximations of delay systems, International Journal of Control, 72, 932-946 (1999) · Zbl 0963.93042
[163] Mäkilä, P. M.; Partington, J. R., Shift operator induced approximations of delay systems, SIAM Journal of Control and Optimization, 37, 6, 1897-1912 (1999) · Zbl 0935.93047
[164] Manitius, A.; Olbrot, A. W., Finite spectrum assignment problem for systems with delays, IEEE Transactions on Automatic Control, 24, 4, 541-553 (1979) · Zbl 0425.93029
[165] Mascolo, S., Congestion control in high speed communication networks using the Smith principle, Automatica, 35, 1921-1935 (1999) · Zbl 0951.90015
[167] Megretski, A.; Rantzer, A., System analysis via integral quadratic constraints, IEEE Transactions on Automatic Control, 42, 6, 819-830 (1997) · Zbl 0881.93062
[168] Meinsma, G.; Zwart, H., On \(H_∞\) control for dead-time systems, IEEE Transactions on Automatic Control, 45, 2, 272-285 (2000) · Zbl 0978.93025
[171] Mirkin, L.; Tadmor, G., \(H_∞\) control of systems with I/O delayA review of some problem-oriented methods, IMA Journal of Mathematical Control and Information, 19, 1-2, 185-200 (2002)
[174] Moog, C. H.; Castro-Linares, R.; Velasco-Villa, M.; Marquez-Martinez, L. A., The disturbance decoupling problem for time-delay nonlinear systems, IEEE Transactions on Automatic Control, 45, 2, 305-309 (2000) · Zbl 0972.93044
[176] Mounier, H.; Rouchon, P.; Rudolph, J., Some examples of linear systems with delays, JESA, European Journal of Automatic Systems, 31, 6, 911-926 (1997)
[177] Mounier, H.; Rudolph, J., Flatness based control of nonlinear delay systemsA chemical reactor example, International Journal of Control, 71, 871-890 (1998) · Zbl 0938.93591
[178] Nagpal, K. M.; Ravi, R., \(H_∞\) control and estimation problems with delayed measurementsState space solutions, SIAM Journal on Control and Optimization, 35, 4, 1217-1243 (1997) · Zbl 0893.93012
[180] Nguang, S. K., Comments on “Robust stabilization of uncertain input-delay systems by SMC with delay compensation”, Automatica, 37, 1677 (2001) · Zbl 1136.93435
[181] Niculescu, S. I., \(H_∞\) memoryless control with an \(α\)-stability constraint for time delays systemsAn LMI approach, IEEE Transactions on Automatic Control, 43, 5, 739-743 (1998) · Zbl 0911.93031
[182] Niculescu, S. I., Delay effects on stability, Lecture notes in control and information sciences, Vol. 269 (2001), Springer: Springer Berlin
[184] Niculescu, S. I.; De Souza, C. E.; Dugard, L.; Dion, J. M., Robust exponential stability of uncertain systems with time-varying delays, IEEE Transactions on Automatic Control, 43, 5, 743-748 (1998) · Zbl 0912.93053
[185] Niculescu, S. I.; Dion, J. M.; Dugard, L., Robust stabilization for uncertain time-delay systems containing saturating actuators, IEEE Transactions on Automatic Control, 41, 5, 742-747 (1996) · Zbl 0851.93067
[186] Niculescu, S. I.; Lozano, R., On the passivity of linear delay systems, IEEE Transactions on Automatic Control, 46, 3, 460-464 (2001) · Zbl 1056.93610
[187] Niculescu, S. I.; Richard, J. P., Analysis and design of delay and propagation systems, IMA Journal of Mathematical Control and Information, 19, 1-2, 1-227 (2002), (special issue)
[192] Nilsson, J.; Bernhardsson, B.; Wittenmark, B., Stochastic analysis and control of real-time systems with random delays, Automatica, 34, 1, 57-64 (1998) · Zbl 0908.93073
[194] Ohta, Y.; Kojima, A., Formulas for Hankel singular values and vectors for a class of input delay systems, Automatica, 35, 201-215 (1999) · Zbl 0938.93027
[195] Olbrot, A. W., Algebraic criteria of controllability to zero function for linear constant time-lag systems, Control and Cybernetics, 2, 1/2, 59-77 (1973) · Zbl 0332.93011
[196] Olbrot, A. W., A sufficiently large time delay in feedback loop must destroy exponential stability of any decay rate, IEEE Transactions on Automatic Control, 29, 367-368 (1984) · Zbl 0541.93059
[198] Orlov, Y.; Belkoura, L.; Dambrine, M.; Richard, J. P., On identifiability of linear time-delay systems, IEEE Transactions on Automatic Control, 47, 8, 1319-1324 (2002) · Zbl 1364.93167
[200] Orlov, Y. V., Optimal delay control—Part I, Automation and Remote Control, 49, 12, 1591-1596 (1988), (Transl. from Avtomatika i Telemekhnika, No. 12, 1988) · Zbl 0705.49013
[201] Orlov, Y. V., Discontinuous unit feedback control of uncertain infinite-dimensional systems, IEEE Transactions on Automatic Control, 45, 5, 834-843 (2000) · Zbl 0973.93018
[202] Orlov, Y. V.; Utkin, V. I., Sliding mode control in infinite-dimensional systems, Automatica, 6, 753-757 (1987) · Zbl 0661.93036
[203] Oucheriah, S., Robust tracking and model following of uncertain dynamic delay, IEEE Transactions on Automatic Control, 44, 7, 1473-1477 (1999) · Zbl 0955.93026
[205] Partington, J. R., Approximation of unstable infinite-dimensional systems using coprime factors, System and Control Letters, 16, 2, 89-96 (1991) · Zbl 0732.93015
[207] Perruquetti, W.; Barbot, J. P., Sliding mode control for engineers, Control Engineering Series, Vol. 11 (2002), Marcel Dekker: Marcel Dekker New York
[210] Picard, P.; LaFay, J. F.; Kucera, V., Feedback realization of nonsingular precompensators for linear systems with delays, IEEE Transactions on Automatic Control, 42, 6, 848-852 (1997) · Zbl 0888.93029
[211] Picard, P.; Lafay, J. F.; Kucera, V., Model matching for linear systems with delays and 2-D systems, Automatica, 35, 3, 183-191 (1998) · Zbl 0937.93007
[214] Rabah, R.; Malabre, M., On the structure at infinity of linear delay systems with application to the disturbance decoupling problem, Kybernetica, 35, 668-680 (1999) · Zbl 1274.93108
[215] Ray, A., Output feedback control under randomly varying distributed delays, Journal of Guidance, Control and Dynamics, 17, 4, 701-711 (1994) · Zbl 0925.93291
[216] Razumikin, B. S., On the stability of systems with a delay, Prikladnava Matematika i Mekhanika, 20, 500-512 (1956), (in Russian)
[220] Richard, J. P.; Gouaisbaut, F.; Perruquetti, W., Sliding mode control in the presence of delay, Kybernetica, 37, 4, 277-294 (2001) · Zbl 1265.93046
[223] Roh, Y. H.; Oh, J. H., Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation, Automatica, 35, 1681-1685 (1999)
[225] Safonov, M. G., Stability and robustness of multivariable feedback systems (1980), MIT Press: MIT Press Cambridge, MA · Zbl 0552.93002
[227] Sename, O., New trends in design of observers for time-delay systems, Kybernetica, 37, 4, 427-458 (2001) · Zbl 1265.93108
[229] Shin, K. G.; Cui, X., Computing time delay and its effects on real-time control systems, IEEE Transactions on Control and System Technology, 3, 2, 218-224 (1995)
[230] Shyu, K. K.; Yan, J. J., Robust stability of uncertain time-delay systems and its stabilization by variable structure control, International Journal of Control, 57, 237-246 (1993) · Zbl 0774.93066
[233] Slater, G. L.; Wells, W. R., On the reduction of optimal time delay systems to ordinary ones, IEEE Transactions on Automatic Control, 17, 154-155 (1972)
[234] Smith, O. J.M., A controller to overcome dead time, ISA Journal of Instrument Society of America, 6, 28-33 (1959)
[236] Sontag, E. D., The lattice of minimal realizations of response maps over rings, Mathematical Systems Theory, 11, 169-175 (1977) · Zbl 0349.93012
[237] Tadmor, G., The standard \(H_∞\) problem in systems with a single input delay, IEEE Transactions on Automatic Control, 45, 3, 382-397 (2000) · Zbl 0978.93026
[238] Tan, K. K.; Wang, Q. K.; Lee, T. H., Finite spectrum assignment control of unstable time delay processes with relay tuning, Industrial Engineering and Chemical Research, 37, 4, 1351-1357 (1998)
[239] Tarbouriech, S.; Gomes Da Silva, J. M., Synthesis of controllers for continuous time delay systems with saturating controls via LMIs, IEEE Transactions on Automatic Control, 45, 1, 105-111 (2000) · Zbl 0978.93062
[240] Teel, A. R., Connection between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Transactions on Automatic Control, 43, 7, 960-964 (1998) · Zbl 0952.93121
[241] Thowsen, A., An analytical stability test for a class of linear time-delay systems, IEEE Transactions on Automatic Control, 25, 735-736 (1981) · Zbl 0481.93049
[242] Tits, A. L.; Balakrishnan, V., Small-\(μ\) theorem with frequency-dependent uncertainty bounds, Mathematics of Control Signals and Systems, 11, 3, 220-243 (1998) · Zbl 0917.93016
[244] Tsypkin, Ya. Z., The systems with delayed feedback, Avtomatika i Telemekhnika, 7, 107-129 (1946)
[245] Tuch, J.; Feuer, A.; Palmor, Z. J., Time delay estimation in continuous linear time-invariant systems, IEEE Transactions on Automatic Control, 39, 823-827 (1994) · Zbl 0807.93006
[246] Van Keulen, B., \(H_∞\) control for distributed parameter systems: A state space approach (1993), Birkhauser: Birkhauser Basel · Zbl 0788.93018
[250] Verriest, E. I., Stability of systems with state-dependent and random delays, IMA Journal on Mathematical Control and Information, 19, 1-2, 103-114 (2002) · Zbl 1010.34078
[251] Verriest, E. I.; Aggoune, W., Stability of nonlinear differential delay systems, Mathematics and Computers in Simulation, 45, 3-4, 257-268 (1998) · Zbl 1017.93511
[252] Walton, K.; Marshall, J. E., Direct method for TDS stability analysis, IEE Proceedings, Part D, 134, 101-107 (1987) · Zbl 0636.93066
[254] Wang, Z.; Huang, B.; Unbehausen, H., Robust \(H_∞\) observer design of linear state delayed systems with parametric uncertaintyThe discrete-time case, Automatica, 35, 6, 1161-1167 (1999) · Zbl 1041.93514
[256] Wang, Q. G.; Zhang, Y., Robust identification of continuous systems with dead-time from step responses, Automatica, 37, 377-390 (2001) · Zbl 0980.93017
[258] Weiss, L., On the controllability of delay-differential equations, SIAM Journal on Control and Optimization, 5, 4, 575-587 (1967) · Zbl 0183.16402
[259] Willems, J., The analysis of feedback systems (1971), MIT Press: MIT Press Cambridge, MA
[260] Willems, J., Paradigms and puzzles in the theory of dynamical systems, IEEE Transactions on Automatic Control, 36, 259-294 (1991) · Zbl 0737.93004
[261] Wu, F.; Grigoriadis, K. M., LPV systems with parameter-varying time delaysAnalysis and control, Automatica, 37, 221-229 (2001) · Zbl 0969.93020
[262] Yamanaka, K.; Ushida, K.; Shimemura, E., Optimal control of systems with random delay, International Journal on Control, 29, 3, 489-495 (1979)
[263] Yao, Y. X.; Zhang, Y. M.; Kovacevic, R., Functional observer and state feedback for input time-delay systems, International Journal on Control, 66, 4, 603-617 (1997) · Zbl 0873.93015
[264] Yoon, M. G.; Lee, B. H., A new approximation method for time-delay systems, IEEE Transactions on Automatic Control, 42, 7, 1008-1012 (1997) · Zbl 0889.93021
[265] Youcef-Toumi, K.; Ito, O., A time delay controller design for systems with unknown dynamics, ASME Journal on Dynamic Systems Measurement and Control, 112, 133-142 (1990) · Zbl 0709.93035
[266] Youcef-Toumi, K.; Reddy, S., Analysis of linear time invariant systems with time delay, ASME Journal on Dynamic Systems Measurement and Control, 114, 4, 623-633 (1992) · Zbl 0769.93051
[267] Youcef-Toumi, K.; Reddy, S., Dynamic analysis anf control of high speed and high precision active magnetic bearings, ASME Journal on Dynamic Systems Measurement and Control, 14, 4, 544-555 (1992) · Zbl 0769.93051
[268] Youcef-Toumi, K.; Wu, S. T., Input-output linearization using time delay control, ASME Journal on Dynamic Systems Measurement and Control, 114, 10-19 (1992) · Zbl 0767.93036
[270] Zheng, F.; Cheng, M.; Gao, W. B., Variable structure control of TDS with a simulation study on stabilizing combustion in liquid propellant rocket motors, Automatica, 31, 7, 1031-1037 (1995) · Zbl 0842.93011
[271] Zhou, K.; Khargonekar, P. P., On the weighted sensitivity minimization problem for delay systems, System and Control Letters, 8, 307-312 (1987) · Zbl 0621.93015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.