zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Minimal solution of general dual fuzzy linear systems. (English) Zbl 1146.15002
Summary: Systems of fuzzy linear equations play a major role in several applications in various areas such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual systems of fuzzy linear equations. Two necessary and sufficient conditions for the existence of a minimal solution are given. Also, some examples in engineering and economy are considered.

MSC:
15A06Linear equations (linear algebra)
08A72Fuzzy algebraic structures
WorldCat.org
Full Text: DOI
References:
[1] Abbasbandy, S.; Alavi, M.: A method for solving fuzzy linear systems, Iranian J fuzzy syst 2, 37-43 (2005) · Zbl 1104.15004
[2] Abbasbandy, S.; Alavi, M.: A new method for solving symmetric fuzzy linear systems, Math sci J islamic azad univ arak 1, 55-62 (2005) · Zbl 1104.15004
[3] Abbasbandy, S.; Jafarian, A.; Ezzati, R.: Conjugate gradient method for fuzzy symmetric positive definite system of linear equations, Appl math comput 171, 1184-1191 (2005) · Zbl 1121.65311
[4] Abbasbandy, S.; Ezzati, R.; Jafarian, A.: Lu decomposition method for solving fuzzy system of linear equations, Appl math comput 172, 633-643 (2006) · Zbl 1088.65023
[5] Abbasbandy, S.; Nieto, J. J.; Alavi, M.: Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos, solitons & fractals 26, 1337-1341 (2005) · Zbl 1073.65054 · doi:10.1016/j.chaos.2005.03.018
[6] Asady, B.; Abbasbandy, S.; Alavi, M.: Fuzzy general linear systems, Appl math comput 169, 34-40 (2005) · Zbl 1119.65325 · doi:10.1016/j.amc.2004.10.042
[7] Barnet, S.: Matrix methods and applications, (1990)
[8] Caldas, M.; Jafari, S.: $\theta $-compact fuzzy topological spaces, Chaos, solitons & fractals 25, 229-232 (2005) · Zbl 1070.54501
[9] Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations, (1989) · Zbl 0592.65093
[10] Dubois, D.; Prade, H.: Operations on fuzzy numbers, J syst sci 9, 613-626 (1978) · Zbl 0383.94045 · doi:10.1080/00207727808941724
[11] Elnaschie, M. S.: A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals 19, 209-236 (2004) · Zbl 1071.81501 · doi:10.1016/S0960-0779(03)00278-9
[12] Elnaschie, M. S.: The concepts of E infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, solitons & fractals 22, 495-511 (2004) · Zbl 1063.81582 · doi:10.1016/j.chaos.2004.02.028
[13] Elnaschie, M. S.: On a fuzzy Kähler manifold which is consistent with the two slit experiment, Int J nonlinear sci numer simul 6, 95-98 (2005)
[14] Elnaschie, M. S.: Elementary number theory in superstrings, loop quantum mechanics, twisters and E-infinity high energy physics, Chaos, solitons & fractals 27, 297-330 (2006) · Zbl 1148.11321 · doi:10.1016/j.chaos.2005.04.116
[15] Elnaschie, M. S.: Superstrings, entropy and the elementary particles content of the standard model, Chaos, solitons & fractals 29, 48-54 (2006) · Zbl 1098.81816 · doi:10.1016/j.chaos.2005.11.032
[16] Feng, G.; Chen, G.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, solitons & fractals 23, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[17] Friedman, M.; Ming, Ma; Kandel, A.: Fuzzy linear systems, Fuzzy sets syst 96, 201-209 (1998) · Zbl 0929.15004 · doi:10.1016/S0165-0114(96)00270-9
[18] Freidman, M.; Ming, Ma; Kandel, A.: Numerical solutions of fuzzy differential and integral equations, Fuzzy sets syst 106, 35-48 (1999) · Zbl 0931.65076 · doi:10.1016/S0165-0114(98)00355-8
[19] Friedman, M.; Ming, Ma; Kandel, A.: Duality in fuzzy linear systems, Fuzzy sets syst 109, 55-58 (2000) · Zbl 0945.15002 · doi:10.1016/S0165-0114(98)00102-X
[20] Jiang, W.; Guo-Dong, Q.; Bin, D.: H$\infty $ variable universe adaptive fuzzy control for chaotic system, Chaos, solitons & fractals 24, 1075-1086 (2005) · Zbl 1083.93013 · doi:10.1016/j.chaos.2004.09.056
[21] Kanfmann, A.; Gupta, M. M.: Introduction fuzzy arithmetic, (1985)
[22] Kincaid, D.; Cheney, W.: Numerical analysis, mathematics of scientific computing, (1996) · Zbl 0877.65002
[23] Ming, Ma; Friedman, M.; Kandel, A.: A new fuzzy arithmetic, Fuzzy sets syst 108, 83-90 (1999) · Zbl 0937.03059 · doi:10.1016/S0165-0114(97)00310-2
[24] Muzzioli, S.; Reynaerts, H.: Fuzzy linear systems of the form a1x+b1=A2x+b2, Fuzzy sets syst 157, 939-951 (2006) · Zbl 1095.15004 · doi:10.1016/j.fss.2005.09.005
[25] Nozari, K.; Fazlpour, B.: Some consequences of spacetime fuzziness, Chaos, solitons & fractals 34, 224-234 (2007) · Zbl 1132.83306
[26] Park, J. H.: Intuitionistic fuzzy metric spaces, Chaos, solitons & fractals 22, 1039-1046 (2004) · Zbl 1060.54010
[27] Tanaka, Y.; Mizuno, Y.; Kado, T.: Chaotic dynamics in the Friedman equation, Chaos, solitons & fractals 24, 407-422 (2005) · Zbl 1070.83535
[28] Wang, X.; Zhong, Z.; Ha, M.: Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy sets syst 119, 121-128 (2001) · Zbl 0974.65035 · doi:10.1016/S0165-0114(98)00284-X
[29] Congxin, Wu.; Ming, Ma.: On the integrals, series and integral equations of fuzzy set-valued functions, J Harbin inst technol 21, 11-19 (1990) · Zbl 0970.26519
[30] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning, Inform sci 8, 199-249 (1975) · Zbl 0397.68071