×

Minimal solution of general dual fuzzy linear systems. (English) Zbl 1146.15002

Summary: Systems of fuzzy linear equations play a major role in several applications in various areas such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual systems of fuzzy linear equations. Two necessary and sufficient conditions for the existence of a minimal solution are given. Also, some examples in engineering and economy are considered.

MSC:

15A06 Linear equations (linear algebraic aspects)
08A72 Fuzzy algebraic structures
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abbasbandy, S.; Alavi, M., A method for solving fuzzy linear systems, Iranian J Fuzzy Syst, 2, 37-43 (2005) · Zbl 1104.15004
[2] Abbasbandy, S.; Alavi, M., A new method for solving symmetric fuzzy linear systems, Math Sci J Islamic Azad Univ Arak, 1, 55-62 (2005) · Zbl 1104.15004
[3] Abbasbandy, S.; Jafarian, A.; Ezzati, R., Conjugate gradient method for fuzzy symmetric positive definite system of linear equations, Appl Math Comput, 171, 1184-1191 (2005) · Zbl 1121.65311
[4] Abbasbandy, S.; Ezzati, R.; Jafarian, A., LU decomposition method for solving fuzzy system of linear equations, Appl Math Comput, 172, 633-643 (2006) · Zbl 1088.65023
[5] Abbasbandy, S.; Nieto, J. J.; Alavi, M., Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos, Solitons & Fractals, 26, 1337-1341 (2005) · Zbl 1073.65054
[6] Asady, B.; Abbasbandy, S.; Alavi, M., Fuzzy general linear systems, Appl Math Comput, 169, 34-40 (2005) · Zbl 1119.65325
[7] Barnet, S., Matrix methods and applications (1990), Clarendon Press: Clarendon Press Oxford
[8] Caldas, M.; Jafari, S., \(θ\)-Compact fuzzy topological spaces, Chaos, Solitons & Fractals, 25, 229-232 (2005) · Zbl 1070.54501
[9] Delves, L. M.; Mohamed, J. L., Computational methods for integral equations (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0592.65093
[10] Dubois, D.; Prade, H., Operations on fuzzy numbers, J Syst Sci, 9, 613-626 (1978) · Zbl 0383.94045
[11] Elnaschie, M. S., A review of \(E\)-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 209-236 (2004) · Zbl 1071.81501
[12] Elnaschie, M. S., The concepts of \(E\) infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, Solitons & Fractals, 22, 495-511 (2004) · Zbl 1063.81582
[13] Elnaschie, M. S., On a fuzzy Kahler manifold which is consistent with the two slit experiment, Int J Nonlinear Sci Numer Simul, 6, 95-98 (2005)
[14] Elnaschie, M. S., Elementary number theory in superstrings, loop quantum mechanics, twisters and \(E\)-infinity high energy physics, Chaos, Solitons & Fractals, 27, 297-330 (2006) · Zbl 1148.11321
[15] Elnaschie, M. S., Superstrings, entropy and the elementary particles content of the standard model, Chaos, Solitons & Fractals, 29, 48-54 (2006) · Zbl 1098.81816
[16] Feng, G.; Chen, G., Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, Solitons & fractals, 23, 459-467 (2005) · Zbl 1061.93501
[17] Friedman, M.; Ming, Ma; Kandel, A., Fuzzy linear systems, Fuzzy Sets Syst, 96, 201-209 (1998) · Zbl 0929.15004
[18] Freidman, M.; Ming, Ma; Kandel, A., Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets Syst, 106, 35-48 (1999) · Zbl 0931.65076
[19] Friedman, M.; Ming, Ma; Kandel, A., Duality in fuzzy linear systems, Fuzzy Sets Syst, 109, 55-58 (2000) · Zbl 0945.15002
[20] Jiang, W.; Guo-Dong, Q.; Bin, D., \(H_∞\) variable universe adaptive fuzzy control for chaotic system, Chaos, Solitons & Fractals, 24, 1075-1086 (2005) · Zbl 1083.93013
[21] Kanfmann, A.; Gupta, M. M., Introduction fuzzy arithmetic (1985), Van Nostrand Reinhold: Van Nostrand Reinhold New York
[22] Kincaid, D.; Cheney, W., Numerical analysis, mathematics of scientific computing (1996), Brooks/Cole Publishing Co: Brooks/Cole Publishing Co Pacific Grove, CA · Zbl 0877.65002
[23] Ming, Ma; Friedman, M.; Kandel, A., A new fuzzy arithmetic, Fuzzy Sets Syst, 108, 83-90 (1999) · Zbl 0937.03059
[24] Muzzioli, S.; Reynaerts, H., Fuzzy linear systems of the form \(A_1x+b_1=A_2x+b_2\), Fuzzy Sets Syst, 157, 939-951 (2006) · Zbl 1095.15004
[25] Nozari, K.; Fazlpour, B., Some consequences of spacetime fuzziness, Chaos, Solitons & Fractals, 34, 224-234 (2007) · Zbl 1132.83306
[26] Park, J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22, 1039-1046 (2004) · Zbl 1060.54010
[27] Tanaka, Y.; Mizuno, Y.; Kado, T., Chaotic dynamics in the Friedman equation, Chaos, Solitons & Fractals, 24, 407-422 (2005) · Zbl 1070.83535
[28] Wang, X.; Zhong, Z.; Ha, M., Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy Sets Syst, 119, 121-128 (2001) · Zbl 0974.65035
[29] Congxin, Wu.; Ming, Ma., On the integrals, series and integral equations of fuzzy set-valued functions, J Harbin Inst Technol, 21, 11-19 (1990) · Zbl 0970.26519
[30] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning, Inform Sci, 8, 199-249 (1975) · Zbl 0397.68071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.