zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent global stability results for delayed Hopfield neural networks. (English) Zbl 1146.34332
The authors investigate the global stability of Hopfield neural networks with time delays. The main results are obtained using the Lyapunov functional method and linear matrix inequalities.

MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Avitabile, G.; Forti, M.; Manetti, S.; Marini, M.: On a class of nonsymmetrical neural networks with application to ADC. IEEE trans circuits syst 38, 202-209 (1991) · Zbl 0709.68621
[2] Liu, D.; Michel, A. N.: Asymptotic stability of discrete time systems with saturation nonlinearities with applications to digital filters. IEEE trans circuits syst I 39, 798-807 (1992) · Zbl 0776.93077
[3] Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Math comput simulat 53, 1-39 (2000)
[4] Pakdaman, K.; Grotta-Ragazzo, C.; Malta, C. P.; Arino, O.; Vibert, J. F.: Effect of delay on the boundary of the basin of attraction in a system of two neurons. Neural networks 11, 509-519 (1998) · Zbl 0869.68086
[5] Pakdaman, K.; Grotta-Ragazzo, C.; Malta, C. P.: Transient regime duration in continuous-time neural networks with delay. Phys rev E 58, 3623-3627 (1998)
[6] Baldi, P.; Atiya, A. F.: How delays affect neural dynamics and learning. IEEE trans neural networks 5, 612-621 (1994)
[7] Marcus, C. M.; Westervelt, R. M.: Stability of analogy neural networks with delay. Phys rev A 39, 347-359 (1989)
[8] Cao, Y. J.; Wu, Q. H.: A note on stability of analog neural networks with time delays. IEEE trans neural networks 7, 1533-1535 (1996)
[9] Olien, L.; &edot, J. B.; Lair: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102, 349-363 (1997) · Zbl 0887.34069
[10] Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general neural networks. IEEE trans circuits syst 39, 487-490 (1992) · Zbl 0775.92010
[11] Roska, T.; Wu, C. W.; Chua, L. O.: Stability of cellular neural network with dominant nonlinear and delay-type templates. IEEE trans circuits syst 40, 270-272 (1993) · Zbl 0800.92044
[12] Gilli, M.: Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions. IEEE trans circuits syst I 41, 518-528 (1994)
[13] Zhang, Q.; Wei, X.; Xu, J.: Stability analysis for cellular neural networks with variable delays. Chaos, solitons & fractals 28, 331-336 (2006) · Zbl 1084.34068
[14] Zhang, Q.; Wei, X.; Xu, J.: Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos, solitons & fractals 23, 1363-1369 (2005) · Zbl 1094.34055
[15] Zhang, Q.; Wei, X.; Xu, J.: New stability conditions for neural networks with constant and variable delays. Chaos, solitons & fractals 26, 1391-1398 (2005) · Zbl 1097.34059
[16] Zhang, Q.; Wei, X.; Xu, J.: On global exponential stability of nonautonomous delayed neural networks. Chaos, solitons & fractals 26, 965-970 (2005) · Zbl 1093.34040
[17] Zhang, Q.; Wei, X.; Xu, J.: Global asymptotic stability of cellular neural networks with infinite delay. Neural network world 15, 579-589 (2005)
[18] Zhang, Q.; Wei, X.; Xu, J.: Global asymptotic stability analysis of neural networks with time-varying delays. Neural process lett 21, 61-71 (2005)
[19] Arik, S.: Stability analysis of delayed neural networks. IEEE trans circuits syst I 47, 1089-1092 (2000) · Zbl 0992.93080
[20] Arik, S.; Tavsanoglu, V.: Equilibrium analysis of delayed cnns. IEEE trans circuits syst I 45, 168-171 (1998) · Zbl 0917.68223
[21] Cao, J.: A set of stability criteria for delayed cellular neural networks. IEEE trans circuits syst I 48, 494-498 (2001) · Zbl 0994.82066
[22] Cao, J.: Global stability analysis in delayed cellular neural networks. Phys rev E 59, 5940-5944 (1999)
[23] Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE trans circuits syst I 49, 1033-1039 (2002)
[24] Li, X. M.; Huang, L. H.; Zhu, H.: Global stability of cellular neural networks with constant and variable delays. Nonlinear analysis 53, 319-333 (2003) · Zbl 1011.92006
[25] Den Driessche, P. Van; Zou, X.: Global attractivity in delayed Hopfield neural networks model. SIAM J appl math 58, 1878-1890 (1998) · Zbl 0917.34036
[26] Ye, H.; Michel, A. N.; Wang, K.: Global stability and local stability of Hopfield neural networks with delays. Phys rev E 50, 4206-4213 (1994)
[27] Chen, T. P.; Amari, S.: New theorems on global convergence of some dynamical systems. Neural networks 14, 251-255 (2001)
[28] Chen, A.; Cao, J.; Huang, L.: An estimation of upperbound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE trans circuits syst I 49, 1028-1032 (2002)
[29] Kuang, Y.: Delay differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[30] Malek-Zavarei, M.; Jamshidi, M.: Time delay systems: analysis, optimization and applications. (1987) · Zbl 0658.93001
[31] Morita, M.: Associative memory with nonmonotone dynamics. Neural networks 6, 115-126 (1993)
[32] Yoshizawa, S.; Morita, M.; Amary, S.: Capacity of associative memory using a nonmonotonic neuron model. Neural networks 6, 167-176 (1993)
[33] Jang, J.; Lee, S.; Shin, S.: An optimization network for matrix inversion. Neural information processing systems (1988)
[34] Tank, D.; Hopfield, J. J.: Simple ’neural’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE trans circuits syst 33, 533-541 (1986)
[35] Chua, L. O.; Yang, L.: Cellular neural networks:theory and applications. IEEE trans circuits syst 35, 1257-1290 (1988)
[36] Mcshane, E. J.: Integration. (1994) · Zbl 0060.13010
[37] Boyd, S.; Ghaoui, L. Ei; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004