zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A type of bounded traveling wave solutions for the Fornberg-Whitham equation. (English) Zbl 1146.35025
Summary: By using bifurcation method, we successfully find the Fornberg-Whitham equation $$u_t - u_{xxt}+u_x=uu_{xxx} - uu_x+3u_xu_{xx}$$ has a type of traveling wave solutions called kink-like wave solutions and antikink-like wave solutions. They are defined on some semifinal bounded domains and possess properties of kink waves and anti-kink waves. Their implicit expressions are obtained. For some concrete data, the graphs of the implicit functions are displayed, and the numerical simulation is made. The results show that our theoretical analysis agrees with the numerical simulation.

35G25Initial value problems for nonlinear higher-order PDE
Full Text: DOI
[1] Lenells, J.: Traveling wave solutions of the Camassa -- Holm and Korteweg -- de Vries equations, J. nonlinear math. Phys. 11, 508-520 (2004) · Zbl 1069.35072 · doi:10.2991/jnmp.2004.11.4.7
[2] Dey, B.: Domain wall solutions of KdV like equations with higher order nonlinearity, J. phys. A 19, L9-L12 (1986) · Zbl 0624.35070
[3] Lenells, J.: Traveling wave solutions of the Camassa -- Holm equation, J. differential equations 217, 393-430 (2005) · Zbl 1082.35127 · doi:10.1016/j.jde.2004.09.007
[4] Liu, Z.; Chen, C.: Compactons in a general compressible hyperelastic rod, Chaos solitons fractals 22, 627-640 (2004) · Zbl 1116.74374 · doi:10.1016/j.chaos.2004.02.050
[5] Lenells, J.: Traveling wave solutions of the Degasperis -- Procesi equation, J. math. Anal. appl. 306, 72-82 (2005) · Zbl 1068.35163 · doi:10.1016/j.jmaa.2004.11.038
[6] Nickel, J.: Travelling wave solutions to the Kuramoto -- Sivashinsky equation, Chaos solitons fractals 33, 1376-1382 (2007) · Zbl 1137.35063 · doi:10.1016/j.chaos.2006.01.087
[7] Liu, Z.; Li, Q.; Lin, Q.: New bounded traveling waves of Camassa -- Holm equation, Internat. J. Bifur. chaos 14, 3541-3556 (2004) · Zbl 1063.35138 · doi:10.1142/S0218127404011521
[8] Guo, B.; Liu, Z.: Two new types of bounded waves of CH-$\gamma $ equation, Sci. China ser. A 48, 1618-1630 (2005) · Zbl 1217.35161 · doi:10.1360/04ys0205
[9] Tang, M.; Zhang, W.: Four types of bounded wave solutions of CH-$\gamma $ equation, Sci. China ser. A 50, 132-152 (2007) · Zbl 1117.35310 · doi:10.1007/s11425-007-2042-8
[10] Chen, C.; Tang, M.: A new type of bounded waves for Degasperis -- Procesi equation, Chaos solitons fractals 27, 698-704 (2006) · Zbl 1082.35044 · doi:10.1016/j.chaos.2005.04.040
[11] Liu, Z.; Yao, L.: Compacton-like wave and kink-like wave of GCH equation, Nonlinear anal. Real world appl. 8, 136-155 (2007) · Zbl 1106.35065 · doi:10.1016/j.nonrwa.2005.06.005
[12] Whitham, G. B.: Variational methods and applications to water wave, Proc. R. Soc. lond. Ser. A 299, 6-25 (1967) · Zbl 0163.21104 · doi:10.1098/rspa.1967.0119
[13] Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena, Philos. trans. R. soc. Lond. ser. A 289, 373-404 (1978) · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064
[14] Luo, D.: Bifurcation theory and methods of dynamical systems, (1997) · Zbl 0961.37015