zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. (English) Zbl 1146.35384
Summary: Lengyel-Epstein reaction-diffusion system of the CIMA reaction is considered. We derive the precise conditions on the parameters so that the spatial homogeneous equilibrium solution and the spatial homogeneous periodic solution become Turing unstable or diffusively unstable. We also perform a detailed Hopf bifurcation analysis to both the ODE and PDE models, and derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution.

MSC:
35K57Reaction-diffusion equations
35B10Periodic solutions of PDE
35K50Systems of parabolic equations, boundary value problems (MSC2000)
92B05General biology and biomathematics
35B32Bifurcation (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Casten, R. G.; Holland, C. J.: Stability properties of solutions to systems of reaction -- diffusion equations, SIAM J. Appl. math. 33, 353-364 (1977) · Zbl 0372.35044 · doi:10.1137/0133023
[2] Crandall, M. G.; Rabinowitz, P. H.: The Hopf bifurcation theorem in infinite dimensions, Arch. rat. Mech. anal. 67, No. 1, 53-72 (1977) · Zbl 0385.34020 · doi:10.1007/BF00280827
[3] De Kepper, P.; Castets, V.; Dulos, E.; Boissonade, J.: Turing-type chemical patterns in the chlorite -- iodide -- malonic acid reaction, Physica D 49, 161-169 (1991)
[4] Epstein, I. R.; Pojman, J. A.: An introduction to nonlinear chemical dynamics, (1998)
[5] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. -H.: Theory and application of Hopf bifurcation, (1981) · Zbl 0474.34002
[6] Jang, J.; Ni, W. M.; Tang, M.: Global bifurcation and structure of Turing patterns in the 1-D lengyel -- Epstein model, J. dynam. Differential equations 16, No. 2, 297-320 (2005) · Zbl 1072.35091 · doi:10.1007/s10884-004-2782-x
[7] Lengyel, I.; Epstein, I. R.: Modeling of Turing structure in the chlorite -- iodide -- malonic acid -- starch reaction system, Science 251, 650-652 (1991)
[8] Lengyel, I.; Epstein, I. R.: A chemical approach to designing Turing patterns in reaction -- diffusion system, Proc. natl. Acad. sci. USA 89, 3977-3979 (1992) · Zbl 0745.92002 · doi:10.1073/pnas.89.9.3977
[9] J.D. Murray, Mathematical Biology, third ed., I. An introduction. Interdisciplinary Applied Mathematics, vol. 17, Springer, New York, 2002; II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics, vol. 18, Springer, New York, 2003.
[10] Ni, W.; Tang, M.: Turing patterns in the lengyel -- Epstein system for the CIMA reaction, Tran. am. Math. soc. 357, 3953-3969 (2005) · Zbl 1074.35051 · doi:10.1090/S0002-9947-05-04010-9
[11] Rovinsky, A.; Menzinger, M.: Interaction of Turing and Hopf bifurcations in chemical systems, Phys. rev. A (3) 46, No. 10, 6315-6322 (1992)
[12] Ruan, S.: Diffusion-driven instability in the Gierer -- Meinhardt model of morphogenesis, Natural resource modeling 11, 131-142 (1998)
[13] Turing, A. M.: The chemical basis of morphogenesis, Phil. trans. R. soc. London ser. B 237, 37-72 (1952)
[14] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, (1991) · Zbl 1027.37002