A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. (English) Zbl 1146.37332

Summary: This paper introduces a new 3-D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing chaotic attractors. More importantly, the system can generate a four-wing chaotic attractor with very complicated topological structures over a large range of parameters. Some basic dynamical behaviors and the compound structure of the new 3-D system are investigated. Detailed bifurcation analysis illustrates the evolution processes of the system among two coexisting sinks, two coexisting periodic orbits, two coexisting single-wing chaotic attractors, major and minor diagonal double-wing chaotic attractors, and a four-wing chaotic attractor. Poincaré-map analysis shows that the system has extremely rich dynamics. The physical existence of the four-wing chaotic attractor is verified by an electronic circuit. Finally, spectral analysis shows that the system has an extremely broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.


37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI


[1] Chen, G.; Yu, X., Chaos control: theory and applications, (2003), Springer-Verlag Berlin
[2] Van Wyk, M.A.; Steeb, W.H., Chaos in electronics, (1997), Kluwer Academic Dordrecht · Zbl 0895.58041
[3] Feki, M., An adaptive chaos synchronization scheme applied to secure communication, Chaos, solitons & fractals, 18, 141-148, (2003) · Zbl 1048.93508
[4] Chen, S.H.; Lü, J., Synchronization of an uncertain unified chaotic system via adaptive control, Chaos, solitons & fractals, 14, 643-647, (2002) · Zbl 1005.93020
[5] Chua, L.O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE trans circuits syst-I, 33, 1072-1118, (1986) · Zbl 0634.58015
[6] Chua, L.O.; Roska, T., The CNN paradigm, IEEE trans circuits syst-I, 40, 147-156, (1993) · Zbl 0800.92041
[7] Suykens, J.A.K.; Chua, L.O., n-double scroll hypercubes in 1-D cnns, Int J bifurc chaos, 7, 1873-1885, (1997) · Zbl 0907.58065
[8] Suykens, J.A.K.; Vandewalle, J., Generation of n-double scrolls (n=1;2;3;4;…), IEEE trans circuits syst-I, 40, 861-867, (1993) · Zbl 0844.58063
[9] Tang, K.S.; Zhong, G.Q.; Chen, G.; Man, K.F., Generation of n-scroll attractors via sine function, IEEE trans circuits syst-I, 48, 1369-1372, (2001)
[10] Yalcin, M.E.; Ozoguz, S.; Suykens, J.A.K.; Vandewalle, J., n-scroll chaos generators: a simple circuit model, Electron lett, 37, 147-148, (2001)
[11] Yalcin, M.E.; Suykens, J.A.K.; Vandewalle, J.; Ozoguz, S., Families of scroll grid attractors, Int J bifurc chaos, 12, 23-41, (2002) · Zbl 1044.37029
[12] Lü, J.; Yu, X.; Chen, G., Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach, IEEE trans circuits syst-I, 50, 198-207, (2003) · Zbl 1368.37041
[13] Lü, J.; Han, F.; Yu, X.; Chen, G., Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method, Automatica, 40, 1677-1687, (2004) · Zbl 1162.93353
[14] Lü, J.; Chen, G.; Yu, X., Design and analysis of multi-scroll chaotic attractors from saturated function series, IEEE trans circuits syst-I, 51, 2476-2490, (2004) · Zbl 1371.37060
[15] Han, F.; Yu, X.; Lü, J.; Chen, G.; Feng, Y., Generating multi-scroll chaotic attractors via a linear second-order hysteresis system, Dynam continuous discrete impulse syst ser B: appl algorith, 12, 95-110, (2005) · Zbl 1117.34044
[16] Zhong, G., Implementation of chua’s circuit with a cubic nonlinearity, IEEE trans circuits syst-I, 41, 934-941, (1994)
[17] Vaněček, A.; Čelikovský, S., Control systems from linear analysis to synthesis of chaos, (1996), Prentice-Hall London · Zbl 0874.93006
[18] Chen, G.; Lü, J., Dynamical analysis, control and synchronization of the generalized Lorenz systems family, (2003), Science Press Beijing, [in Chinese]
[19] Chen, G.; Ueta, T., Yet another chaotic attractor, Int J bifurc chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[20] Čelikovský, S.; Chen, G., On the generalized Lorenz canonical form, Chaos, solitons & fractals, 26, 1271-1276, (2005) · Zbl 1100.37016
[21] Qi, G.; Du, G.; Chen, S.; Chen, Z.; Yuan, Z., Analysis of a new chaotic system, Phys A: statist mech appl, 352, 295-308, (2005)
[22] Baghious, E.H.; Jarry, P., Lorenz attractor from differential equations with piecewise-linear terms, Int J bifurc chaos, 3, 201-210, (1993) · Zbl 0873.34045
[23] Elwakil, A.S.; Kennedy, M.P., Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices, IEEE trans circuits syst-I, 48, 289-307, (2001) · Zbl 0998.94048
[24] Elwakil, A.S.; Özogus, S.; Kennedy, M.P., Creation of a complex butterfly attractor using a novel Lorenz-type system, IEEE trans circuits syst-I, 49, 527-530, (2002) · Zbl 1368.37040
[25] Ozoguz, S.; Elwakil, A.S.; Salama, K.N., n-scroll chaos generator using nonlinear transconductor, Electron lett, 38, 685-686, (2002)
[26] Liu, W.; Chen, G., Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?, Int J bifurc chaos, 14, 1395-1403, (2004) · Zbl 1086.37516
[27] Lü, J.; Chen, G.; Cheng, D., A new chaotic system and beyond: the generalized Lorenz-like system, Int J bifurcation chaos, 14, 1507-1537, (2004) · Zbl 1129.37323
[28] Miranda, R.; Stone, E., The proto-Lorenz system, Phys lett A, 178, 105-113, (1993)
[29] Qi, G.; Du, S.; Chen, G.; Chen, Z.; Yuan, Z., On a 4-dimensional chaotic system, Chaos, solitons & fractals, 23, 1671-1682, (2005) · Zbl 1071.37025
[30] Qi, G.; Chen, G.; Zhang, Y., Analysis and circuit implementation of a new 4-D chaotic system, Phys lett A, 352, 386-397, (2006) · Zbl 1187.37050
[31] Qi, G.; Chen, G.; Li, S.; Zhang, Y., Four-wing attractors: from pseudo to real, Int J bifurc chaos, 16, 859-885, (2006) · Zbl 1111.37025
[32] Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos, (1990), Springer Berlin · Zbl 0701.58001
[33] Pérez, G.; Cerdeira, H.A., Extracting messages masked by chaos, Phys rev lett, 74, 1970-1973, (1995)
[34] Hu, G.; Feng, Z.; Meng, R., Chosen ciphertext attack on chaos communication based on chaotic synchronization, IEEE trans circuits syst-I, 50, 275-279, (2003) · Zbl 1368.94100
[35] Li, S.; Alvarez, G.; Chen, G., Breaking a chaos-based secure communication scheme designed by an improved modulation method, Chaos, solitons & fractals, 25, 109-120, (2005) · Zbl 1075.94527
[36] Ueta, T.; Chen, G., Bifurcation analysis of chen’s attractor, Int J bifurc chaos, 10, 917-931, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.