Turek, Ondřej Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. (English) Zbl 1146.68410 Theor. Inform. Appl. 41, No. 2, 123-135 (2007). Summary: We deal with the balance properties of the infinite binary words associated to \(\beta\)-integers when \(\beta\) is a quadratic simple Pisot number. Those words are the fixed points of the morphisms of the type \(\varphi(A)=A^pB\), \(\varphi(B)=A^q\) for \(p\in\mathbb N\), \(q\in\mathbb N\), \(p\geq q\), where \(\beta=\frac{p+\sqrt{p^2+4q}}{2}\). We prove that such word is \(t\)-balanced with \(t=1+[(p-1)/(p+1-q)]\). Finally, in the case that \(p<q\) it is known that the fixed point of the substitution \(\varphi(A)=A^pB\), \(\varphi(B)=A^q\) is not \(m\)-balanced for any \(m\). We exhibit an infinite sequence of pairs of words with the unbalance property. Cited in 6 Documents MSC: 68R15 Combinatorics on words Keywords:infinite binary words PDF BibTeX XML Cite \textit{O. Turek}, Theor. Inform. Appl. 41, No. 2, 123--135 (2007; Zbl 1146.68410) Full Text: DOI Numdam Numdam EuDML OpenURL References: [1] B. Adamczewski , Balances for fixed points of primitive substitutions . Theoret. Comput. Sci. 273 ( 2002 ) 197 - 224 . Zbl 1059.68083 · Zbl 1059.68083 [2] F. Bassino , Beta-expansions for cubic Pisot numbers , in LATIN’02, Springer. Lect. notes Comput. Sci. 2286 ( 2002 ) 141 - 152 . Zbl pre02086225 · Zbl 1152.11342 [3] V. Berthé and R. Tijdeman , Balance properties of multi-dimensional words . Theoret. Comput. Sci. 60 ( 1938 ) 815 - 866 . Zbl 0997.68091 · Zbl 0997.68091 [4] E.M. Coven and G.A. Hedlund , Sequences with minimal block growth . Math. Systems Theory 7 ( 1973 ) 138 - 153 . Zbl 0256.54028 · Zbl 0256.54028 [5] Ch. Frougny and B. Solomyak , Finite beta-expansions . Ergod. Theor. Dyn. Syst. 12 ( 1992 ) 713 - 723 . Zbl 0814.68065 · Zbl 0814.68065 [6] Ch. Frougny , J.P. Gazeau and J. Krejcar , Additive and multiplicative properties of point-sets based on beta-integers . Theoret. Comput. Sci. 303 ( 2003 ) 491 - 516 . Zbl 1036.11034 · Zbl 1036.11034 [7] Ch. Frougny , E. Pelantová and Z. Masáková , Complexity of infinite words associated with beta-expansions . RAIRO-Inf. Theor. Appl. 38 ( 2004 ) 163 - 185 . Numdam | Zbl 1104.11013 · Zbl 1104.11013 [8] M. Lothaire , Algebraic combinatorics on words . Cambridge University Press ( 2002 ). MR 1905123 | Zbl 1001.68093 · Zbl 1001.68093 [9] M. Morse and G.A. Hedlund , Symbolic dynamics . Amer. J. Math. 60 ( 1938 ) 815 - 866 . JFM 64.0798.04 · JFM 64.0798.04 [10] M. Morse and G.A. Hedlund , Symbolic dynamics II . Sturmian Trajectories. Amer. J. Math. 62 ( 1940 ) 1 - 42 . JFM 66.0188.03 · Zbl 0022.34003 [11] O. Turek , Complexity and balances of the infinite word of \(\beta \)-integers for \(\beta = 1+\sqrt{3}\) , in Proc. of WORDS’03, Turku ( 2003 ) 138 - 148 . Zbl 1040.68090 · Zbl 1040.68090 [12] L. Vuillon , Balanced words . Bull. Belg. Math. Soc. Simon Stevin 10 ( 2003 ) 787 - 805 . Article | Zbl 1070.68129 · Zbl 1070.68129 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.