×

On the stability of the solution sets of general multivalued vector quasiequilibrium problems. (English) Zbl 1146.90516

Summary: We give sufficient conditions for the semicontinuity of solution sets of general multivalued vector quasiequilibrium problems. All kinds of semicontinuities are considered: lower semicontinuity, upper semicontinuity, Hausdorff upper semicontinuity, and closedness. Moreover, we investigate the weak, middle, and strong solutions of quasiequilibrium problems. Many examples are provided to give more insights and comparisons with recent existing results.

MSC:

90C31 Sensitivity, stability, parametric optimization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Muu, L.D.: Stability property of a class of variational inequalities. Math. Oper. Stat. Ser. Optim. 15, 347–351 (1984) · Zbl 0553.49007
[2] Bianchi, M., Pini, R.: A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31, 445–450 (2003) · Zbl 1112.90082 · doi:10.1016/S0167-6377(03)00051-8
[3] Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004) · Zbl 1048.49004 · doi:10.1016/j.jmaa.2004.03.014
[4] Mansour, M.A., Riahi, H.: Sensitivity analysis for abstract equilibrium problems. J. Math. Anal. Appl. 306, 684–691 (2005) · Zbl 1068.49005 · doi:10.1016/j.jmaa.2004.10.011
[5] Anh, L.Q., Khanh, P.Q.: On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems. J. Math. Anal. Appl. 321, 308–315 (2006) · Zbl 1104.90041 · doi:10.1016/j.jmaa.2005.08.018
[6] Anh, L.Q., Khanh, P.Q.: Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. J. Glob. Optim. 37, 449–465 (2007) · Zbl 1156.90025 · doi:10.1007/s10898-006-9062-8
[7] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994) · Zbl 0888.49007
[8] Fu, J.Y., Wan, A.H.: Generalized vector equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56, 259–268 (2002) · Zbl 1023.90057 · doi:10.1007/s001860200208
[9] Lin, L.J., Yu, Z.T., Kassay, G.: Existence of equilibria for multivalued mappings and its application to vectorial equilibria. J. Optim. Theory Appl. 114, 189–208 (2002) · Zbl 1023.49014 · doi:10.1023/A:1015420322818
[10] Ansari, Q.H., Flores-Bazán, F.: Generalized vector quasiequilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003) · Zbl 1022.90023 · doi:10.1016/S0022-247X(02)00535-8
[11] Chen, M.P., Lin, L.J., Park, S.: Remarks on generalized quasiequilibrium problems. Nonlinear Anal. 52, 433–444 (2003) · Zbl 1029.47031 · doi:10.1016/S0362-546X(02)00106-2
[12] Hai, N.X., Khanh, P.Q.: Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. 133 (2007, to appear, available online) · Zbl 1146.49004
[13] Hai, N.X., Khanh, P.Q.: Systems of multivalued quasiequilibrium problems. Adv. Nonlinear Var. Inequal. 9, 109–120 (2006) · Zbl 1181.49009
[14] Khanh, P.Q., Luc, D.T., Tuan, N.D.: Local uniqueness of solutions for equilibrium problems. Adv. Nonlinear Var. Inequal. 9, 1–11 (2006) · Zbl 1181.49010
[15] Lin, L.J., Ansari, Q.H., Wu, J.Y.: Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems. J. Optim. Theory Appl. 117, 121–137 (2007) · Zbl 1063.90062 · doi:10.1023/A:1023656507786
[16] Bianchi, M., Schaible, S.: Equilibrium problems under generalized convexity and generalized monotonicity. J. Glob. Optim. 30, 121–134 (2004) · Zbl 1066.90080 · doi:10.1007/s10898-004-8269-9
[17] Ding, X.P.: Sensitivity analysis for generalized nonlinear implicit quasivariational inclusions. Appl. Math. Lett. 17, 225–235 (2004) · Zbl 1056.49010 · doi:10.1016/S0893-9659(04)90036-5
[18] Agarwal, R.P., Huang, N.J., Tan, M.Y.: Sensitivity analysis for a new system of generalized nonlinear mixed quasivariational inclusions. Appl. Math. Lett. 17, 345–352 (2004) · Zbl 1056.49008 · doi:10.1016/S0893-9659(04)90073-0
[19] Khanh, P.Q., Luu, L.M.: Upper semicontinuity of the solution set of parametric multivalued vector quasivariational inequalities and applications. J. Glob. Optim. 32, 569–580 (2005) · Zbl 1097.49013 · doi:10.1007/s10898-004-2694-7
[20] Khanh, P.Q., Luu, L.M.: Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133 (2007, to appear, available online) · Zbl 1146.49006
[21] Li, S.J., Chen, G.Y., Teo, K.L.: On the stability of generalized vector quasivariational inequality problems. J. Optim. Theory Appl. 113, 283–295 (2002) · Zbl 1003.47049 · doi:10.1023/A:1014830925232
[22] Cheng, Y.H., Zhu, D.L.: Global stability results for the weak vector variational inequality. J. Glob. Optim. 32, 543–550 (2005) · Zbl 1097.49006 · doi:10.1007/s10898-004-2692-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.