×

Microlocalization of rational Cherednik algebras. (English) Zbl 1147.14002

This paper gives a construction of a microlocalization of the rational Cherednik algebras of type \(S_n\). Let us first recall that such a rational Cherednik algebra is a one-parameter quantization of the algebra corresponding to the orbifold of \({\mathbb C}^{2 n}/S_n\). The microlocalization is obtained by a quantization of the Hilbert scheme of \(n\) points in \(\mathbb C^2\). The authors finally prove that there is an equivalence between the category of modules over rational Cherednik algebras and modules over the microlocalization.

MSC:

14A20 Generalizations (algebraic spaces, stacks)
14A22 Noncommutative algebraic geometry
16D90 Module categories in associative algebras
14C05 Parametrization (Chow and Hilbert schemes)
53D55 Deformation quantization, star products
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] A. BeĭLinson and J. Bernstein, Localisation de \(g\)-modules , C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. · Zbl 0476.14019
[2] Y. Berest, P. Etingof, and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants , Duke Math. J. 118 (2003), 279–337. · Zbl 1067.16047
[3] R. Bezrukavnikov and P. Etingof, Parabolic induction and restriction functors for rational Cherednik algebras , preprint,\arxiv0803.3639v1[math.RT] · Zbl 1226.20002
[4] R. Bezrukavnikov, M. Finkelberg, and V. Ginzburg, Cherednik algebras and Hilbert schemes in characteristic \(p\) , with an appendix by P. Etingof, Represent. Theory 10 (2006), 254–298. · Zbl 1130.14005
[5] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4–6, Elem. Math. (Berlin), Springer, Berlin, 2002. · Zbl 0983.17001
[6] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , Invent. Math. 147 (2002), 243–348. · Zbl 1061.16032
[7] W. L. Gan and V. Ginzburg, Almost-commuting variety, \(\mathscrD\)-modules, and Cherednik algebras , with an appendix by V. Ginzburg, IMRP Int. Math. Res. Pap. 2006 , no. 26439. · Zbl 1158.14006
[8] I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes , Adv. Math. 198 (2005), 222–274. · Zbl 1084.14005
[9] -, Rational Cherednik algebras and Hilbert schemes, II: Representations and sheaves , Duke Math. J. 132 (2006), 73–135. · Zbl 1096.14003
[10] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics , 2nd ed., Cambridge Univ. Press, Cambridge, 1990. · Zbl 0734.58005
[11] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture , J. Amer. Math. Soc. 14 (2001), 941–1006. JSTOR: · Zbl 1009.14001
[12] -, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , Invent. Math. 149 (2002), 371–407. · Zbl 1053.14005
[13] G. J. Heckman, “A remark on the Dunkl differential-difference operators” in Harmonic Analysis on Reductive Groups (Brunswick, Me., 1989) , Progr. Math. 101 , Birkhäuser, Boston, 1991, 181–191. · Zbl 0749.33005
[14] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra , Invent. Math. 75 (1984), 327–358. · Zbl 0538.22013
[15] D. Kaledin, Geometry and topology of symplectic resolutions , preprint,\arxivmath/0608143v1[math.AG] · Zbl 1182.53078
[16] M. Kashiwara, “Representation theory and \(D\)-modules on flag varieties” in Orbites unipotentes et représentations, III , Astérisque 173 –. 174 , Soc. Math. France, Montrouge, 1989, 55–109. · Zbl 0705.22010
[17] -, Quantization of contact manifolds , Publ. Res. Inst. Math. Sci. 32 (1996), 1–7. · Zbl 0874.53027
[18] -, \(D\)-Modules and Microlocal Calculus , Transl. Math. Monogr. 217 , Amer. Math. Soc., Providence, 2003. · Zbl 1017.32012
[19] -, “Equivariant derived category and representation of real semisimple Lie groups” in Representation Theory and Complex Analysis,(Venice, 2004) , Lecture Notes in Math. 1931 , Springer, Berlin, 2008, 137–234. · Zbl 1173.22010
[20] M. Kashiwara and T. Kawai, On holonomic systems of microdifferential equations, III: Systems with regular singularities , Publ. Res. Inst. Math. Sci. 17 (1981), 813–979. · Zbl 0505.58033
[21] D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type , Comm. Pure Appl. Math. 31 (1978), 481–507. · Zbl 0368.58008
[22] M. Kontsevich, Deformation quantization of algebraic varieties , Lett. Math. Phys. 56 (2001), 271–294. · Zbl 1081.14500
[23] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces , Univ. Lecture Ser. 18 , Amer. Math. Soc., Providence, 1999. · Zbl 0949.14001
[24] P. Polesello and P. Schapira, Stacks of quantization-deformation modules on complex symplectic manifolds , Int. Math. Res. Not. 2004 , no. 49, 2637–2664. · Zbl 1086.53107
[25] P. Schapira, Microdifferential Systems in the Complex Domain , Grundlehren Math. Wiss. 269 , Springer, Berlin, 1985. · Zbl 0554.32022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.