zbMATH — the first resource for mathematics

\(K\)-theory and noncommutative geometry. Proceedings of the ICM 2006 satellite conference, Valladolid, Spain, August 31–September 6, 2006. (English) Zbl 1147.19001
EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-060-9/hbk). xiv, 440 p. (2008).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Meyer, Ralf, Categorical aspects of bivariant K-theory, 1-39 [Zbl 1157.19004]
Bartels, Arthur; Echterhoff, Siegfried; Lück, Wolfgang, Inheritance of isomorphism conjectures under colimits, 41-70 [Zbl 1159.19005]
Emerson, Heath; Meyer, Ralf, Coarse and equivariant co-assembly maps, 71-89 [Zbl 1160.19003]
Muro, Fernando; Tonks, Andrew, On \(K_1\) of a Waldhausen category, 91-115 [Zbl 1165.18010]
Karoubi, Max, Twisted \(K\)-theory – old and new, 117-149 [Zbl 1180.19003]
Voigt, Christian, Equivariant cyclic homology for quantum groups, 151-179 [Zbl 1203.19003]
Carrillo Rouse, Paulo, A Schwartz type algebra for the tangent groupoid, 181-199 [Zbl 1165.58003]
Cuntz, Joachim, \(C^*\)-algebras associated with the \(ax+b\)-semigroup over \(\mathbb N\), 201-215 [Zbl 1162.46036]
Werner, Wend, On a class of Hilbert \(C^*\)-manifolds, 217-225 [Zbl 1163.46048]
Bunke, Ulrich; Schick, Thomas; Spitzweck, Markus; Thom, Andreas, Duality for topological abelian group stacks and \(T\)-duality, 227-347 [Zbl 1170.14001]
Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard; Tsygan, Boris, Deformations of gerbes on smooth manifolds, 349-392 [Zbl 1157.53051]
Garkusha, Grigory; Prest, Mike, Torsion classes of finite type and spectra, 393-412 [Zbl 1211.14007]
Geisser, Thomas, Parshin’s conjecture revisited, 413-425 [Zbl 1161.19004]
Weibel, Charles, Axioms for the norm residue isomorphism, 427-435 [Zbl 1156.14016]
19-06 Proceedings, conferences, collections, etc. pertaining to \(K\)-theory
58-06 Proceedings, conferences, collections, etc. pertaining to global analysis
14A22 Noncommutative algebraic geometry
Full Text: DOI