×

zbMATH — the first resource for mathematics

Harmonic maps and representations of non-uniform lattices of \(PU(m,1)\). (English) Zbl 1147.22009
The authors make use of harmonic maps techniques to study representations of lattices of \(PU(m,1)\) into \(PU(n,1)\) in order to provide rigidity results. This goes as follows: first one shows the existence of a harmonic map between the corresponding symmetric spaces. Then one must prove, under certain constraints, that the harmonic map is pluriharmonic, holomorphic, totally geodesic, isometric, depending on the situation. The existence is proved of a harmonic map from \(\mathbb H^m_C\) to \(\mathbb H^n_C\) making use of Corlette’s results. Finally the authors study a new invariant associated to representations of fundamental groups of finite topological type and negative Euler characteristic into \(PU(n,1)\).

MSC:
22E40 Discrete subgroups of Lie groups
32Q05 Negative curvature complex manifolds
32Q20 Kähler-Einstein manifolds
53C24 Rigidity results
53C35 Differential geometry of symmetric spaces
53C43 Differential geometric aspects of harmonic maps
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] Auslander, Louis, Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2), 71, 579-590, (1960) · Zbl 0099.25602
[2] Biquard, Olivier, Métriques d’einstein à cusps et équations de Seiberg-Witten, J. Reine Angew. Math., 490, 129-154, (1997) · Zbl 0891.53029
[3] Burger, M.; Iozzi, A., Bounded cohomology and representation varieties of lattices in PSU \((1,n), (2001)\)
[4] Burger, M.; Iozzi, A., Letter, (2003)
[5] Burger, M.; Monod, N., Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., 12, 2, 219-280, (2002) · Zbl 1006.22010
[6] Carlson, James A.; Toledo, Domingo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math., 69, 173-201, (1989) · Zbl 0695.58010
[7] Corlette, Kevin, Flat \(G\)-bundles with canonical metrics, J. Differential Geom., 28, 3, 361-382, (1988) · Zbl 0676.58007
[8] Corlette, Kevin, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2), 135, 1, 165-182, (1992) · Zbl 0768.53025
[9] Eells, James Jr.; Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86, 109-160, (1964) · Zbl 0122.40102
[10] Gaffney, Matthew P., A special stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2), 60, 140-145, (1954) · Zbl 0055.40301
[11] Goldman, W. M.; Millson, J. J., Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math., 88, 3, 495-520, (1987) · Zbl 0627.22012
[12] Goldman, William M., Geometry and topology (College Park, Md., 1983/84), 1167, Representations of fundamental groups of surfaces, 95-117, (1985), Springer, Berlin · Zbl 0575.57027
[13] Goldman, William M., Complex hyperbolic geometry, (1999), The Clarendon Press Oxford University Press, New York · Zbl 0939.32024
[14] Gromov, Mikhail; Schoen, Richard, Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math., 76, 165-246, (1992) · Zbl 0896.58024
[15] Gusevskii, Nikolay; Parker, John R., Representations of free Fuchsian groups in complex hyperbolic space, Topology, 39, 1, 33-60, (2000) · Zbl 0977.32017
[16] Gusevskii, Nikolay; Parker, John R., Complex hyperbolic quasi-Fuchsian groups and toledo’s invariant, Geom. Dedicata, 97, 151-185, (2003) · Zbl 1042.57023
[17] Helgason, Sigurdur, Groups and geometric analysis, 113, (1984), Academic Press Inc., Orlando, FL · Zbl 0543.58001
[18] Hernández, Luis, Kähler manifolds and \(1/4\)-pinching, Duke Math. J., 62, 3, 601-611, (1991) · Zbl 0725.53068
[19] Hummel, Christoph; Schroeder, Viktor, Cusp closing in rank one symmetric spaces, Invent. Math., 123, 2, 283-307, (1996) · Zbl 0860.53025
[20] Iozzi, Alessandra, Rigidity in dynamics and geometry (Cambridge, 2000), Bounded cohomology, boundary maps, and rigidity of representations into \({\rm Homeo}_+(\bf S^1)\) and \({\rm SU}(1,n), 237-260, (2002),\) Springer, Berlin · Zbl 1012.22023
[21] Johnson, Dennis; Millson, John J., Discrete groups in geometry and analysis (New Haven, Conn., 1984), 67, Deformation spaces associated to compact hyperbolic manifolds, 48-106, (1987), Birkhäuser Boston, Boston, MA · Zbl 0664.53023
[22] Jost, Jürgen; Zuo, Kang, Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom., 47, 3, 469-503, (1997) · Zbl 0911.58012
[23] Kapovich, M., On normal subgroups in the fundamental groups of complex surfaces, arXiv:math.GT/9808085
[24] Kobayashi, Shoshichi, Hyperbolic manifolds and holomorphic mappings, 2, (1970), Marcel Dekker, New York · Zbl 0207.37902
[25] Li, Peter, Complete surfaces of at most quadratic area growth, Comment. Math. Helv., 72, 1, 67-71, (1997) · Zbl 1008.53034
[26] Lichnerowicz, André, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), Applications harmoniques et variétés kähleriennes, 341-402, (19681969), Academic Press, London · Zbl 0193.50101
[27] Livné, R., On certain covers of the universal elliptic curve, (1981)
[28] Margulis, G. A., Discrete subgroups of semisimple Lie groups, 17, (1991), Springer-Verlag, Berlin · Zbl 0732.22008
[29] Mok, Ngaiming; Siu, Yum Tong; Yeung, Sai-Kee, Geometric superrigidity, Invent. Math., 113, 1, 57-83, (1993) · Zbl 0808.53043
[30] Mostow, G. D., Strong rigidity of locally symmetric spaces, (1973), Princeton University Press, Princeton, N.J. · Zbl 0265.53039
[31] Pansu, Pierre, Sous-groupes discrets des groupes de Lie: rigidité, arithméticité, Astérisque, 227-778, 69-105, (1995) · Zbl 0835.22011
[32] Reznikov, Alexander G., Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology, 32, 4, 899-907, (1993) · Zbl 0804.57013
[33] Sampson, J. H., Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), 11, 2, 211-228, (1978) · Zbl 0392.31009
[34] Schoen, Richard; Yau, Shing Tung, On univalent harmonic maps between surfaces, Invent. Math., 44, 3, 265-278, (1978) · Zbl 0388.58005
[35] Serre, Jean-Pierre, Arbres, amalgames \(, {\rm SL}_2, (1977),\) Société Mathématique de France, Paris · Zbl 0369.20013
[36] Siu, Yum Tong, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2), 112, 1, 73-111, (1980) · Zbl 0517.53058
[37] Toledo, Domingo, Harmonic maps from surfaces to certain Kaehler manifolds, Math. Scand., 45, 1, 13-26, (1979) · Zbl 0435.58008
[38] Toledo, Domingo, Representations of surface groups in complex hyperbolic space, J. Diff. Geom., 29, 125-133, (1989) · Zbl 0676.57012
[39] Wood, John C., Holomorphicity of certain harmonic maps from a surface to complex projective \(n\)-space, J. London Math. Soc. (2), 20, 1, 137-142, (1979) · Zbl 0407.58026
[40] Zucker, Steven \(, L_2\) cohomology of warped products and arithmetic groups, Invent. Math., 70, 2, 169-218, (198283) · Zbl 0508.20020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.