Cafagna, Donato; Grassi, Giuseppe Fractional-order Chua’s circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos. (English) Zbl 1147.34302 Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 3, 615-639 (2008). Summary: In this tutorial the chaotic behavior of the fractional-order Chua’s circuit is investigated from the time-domain point of view. The objective is achieved using the Adomian decomposition method, which enables the solution of the fractional differential equations to be found in closed form. By exploiting the capabilities offered by the decomposition method, the paper presents two remarkable findings. The first result is that a novel bifurcation parameter is identified, that is, the fractional-order \(q\) of the derivative. The second result is that chaos exists in the fractional Chua’s circuit with order \(q=1.05\), which is the lowest order reported in literature for such circuits. Finally, a reliable and efficient binary test for chaos (called “0-1 test”) is utilized to detect the presence of chaotic attractors in the system dynamics. Cited in 24 Documents MSC: 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. 34C23 Bifurcation theory for ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations 26A33 Fractional derivatives and integrals 37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 34-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to ordinary differential equations 37-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to dynamical systems and ergodic theory PDF BibTeX XML Cite \textit{D. Cafagna} and \textit{G. Grassi}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 3, 615--639 (2008; Zbl 1147.34302) Full Text: DOI References: [1] DOI: 10.1103/RevModPhys.65.1331 [2] DOI: 10.1016/0895-7177(90)90125-7 · Zbl 0713.65051 [3] DOI: 10.1007/978-94-015-8289-6 [4] DOI: 10.1016/S0895-7177(96)00171-9 · Zbl 0874.65051 [5] DOI: 10.1016/S0960-0779(02)00438-1 · Zbl 1033.37019 [6] Cafagna D., IEICE Trans. Fund. E 89 pp 2752– [7] DOI: 10.1142/S0218127407017276 · Zbl 1117.37017 [8] DOI: 10.1111/j.1365-246X.1967.tb02303.x [9] DOI: 10.1016/0167-2789(91)90222-U · Zbl 0736.62075 [10] DOI: 10.1109/9.159595 · Zbl 0825.58027 [11] Chua L. O., IEEE Trans. Circuits Syst.-I 33 pp 1073– [12] DOI: 10.1002/cta.4490220404 [13] DOI: 10.1016/j.jmaa.2004.07.039 · Zbl 1061.34003 [14] DOI: 10.1006/jmaa.2000.7194 [15] DOI: 10.1023/A:1016592219341 · Zbl 1009.65049 [16] DOI: 10.1023/B:NUMA.0000027736.85078.be · Zbl 1055.65098 [17] DOI: 10.1103/PhysRevA.34.4971 [18] DOI: 10.1007/978-3-7091-2664-6_5 [19] DOI: 10.1098/rspa.2003.1183 · Zbl 1042.37060 [20] DOI: 10.1016/j.physd.2005.09.011 · Zbl 1097.37024 [21] DOI: 10.1109/81.404062 [22] Hilfer R., Applications of Fractional Calculus in Physics (2001) · Zbl 0998.26002 [23] DOI: 10.1142/S0218127496001454 · Zbl 1298.37018 [24] Kantz H., Nonlinear Time Series Analysis (2004) · Zbl 1050.62093 [25] DOI: 10.1016/j.chaos.2004.02.035 · Zbl 1069.37025 [26] DOI: 10.1016/j.physa.2004.04.113 [27] DOI: 10.1016/j.physa.2005.06.078 [28] DOI: 10.1016/j.physleta.2006.01.068 [29] DOI: 10.1016/j.chaos.2005.04.037 · Zbl 1101.37307 [30] DOI: 10.1142/9789812798855_0004 [31] DOI: 10.1016/j.amc.2004.03.014 · Zbl 1063.65055 [32] DOI: 10.1142/S0218127405013800 · Zbl 1096.94051 [33] Oldham K. B., The Fractional Calculus (1974) · Zbl 0292.26011 [34] DOI: 10.1007/978-1-4612-3486-9 [35] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008 [36] DOI: 10.1016/S0096-3003(01)00167-9 · Zbl 1029.34003 [37] DOI: 10.1109/TAC.1984.1103551 · Zbl 0532.93025 [38] F. Takens, Lecture Notes in Mathematics 98 (Springer, Berlin, 1981) pp. 366–381. [39] Zhang H. B., Int. J. Mod. Phys. C 16 pp 1– [40] DOI: 10.1109/81.340866 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.