×

A chaotic system with one saddle and two stable node-foci. (English) Zbl 1147.34306


MSC:

34A34 Nonlinear ordinary differential equations and systems
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barnett S., Polynomials and Linear Control Systems (1983) · Zbl 0528.93003
[2] Čelikovský S., Kybernetika 30 pp 403–
[3] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023
[4] DOI: 10.1016/j.chaos.2005.02.040 · Zbl 1100.37016
[5] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013
[6] DOI: 10.1016/j.chaos.2003.10.009 · Zbl 1045.37014
[7] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510
[8] DOI: 10.1142/S021812740200631X · Zbl 1043.37026
[9] DOI: 10.1090/S0273-0979-1995-00558-6 · Zbl 0820.58042
[10] Oselede V. I., Trudy Moskov. Mat. Obshch. 19 pp 179–
[11] DOI: 10.1007/978-1-4612-5767-7
[12] Sprott J. C., Chaos and Time-Series Analysis (2003) · Zbl 1012.37001
[13] DOI: 10.1038/35023206
[14] DOI: 10.1016/S0764-4442(99)80439-X · Zbl 0935.34050
[15] Ueta T., Int. J. Bifurcation and Chaos 10 pp 1917–
[16] Vanečěk A., Control Systems: From Linear Analysis to Synthesis of Chaos (1996)
[17] R. Williams, Turbulence Seminar Berkeley 1996/97, eds. P. Bermard and T. Ratiu (Springer-Verlag, Berlin, 1997) pp. 94–112.
[18] DOI: 10.1142/S0218127406016501 · Zbl 1185.37088
[19] DOI: 10.1142/S0218127407019792 · Zbl 1149.37308
[20] DOI: 10.1142/S0218127403008089 · Zbl 1046.37018
[21] DOI: 10.1142/S0218127404011296 · Zbl 1129.37326
[22] DOI: 10.1016/j.chaos.2003.10.030 · Zbl 1048.37032
[23] DOI: 10.1016/S0960-0779(03)00243-1 · Zbl 1053.37016
[24] DOI: 10.1007/s11071-005-4195-8 · Zbl 1142.70012
[25] DOI: 10.1142/S0218127406016203 · Zbl 1185.37092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.