×

Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions. (English) Zbl 1147.35042

Summary: Consider the equation \(- \Delta u = 0\) in a bounded smooth domain \(\Omega \subset {\mathbb{R}}^N\), complemented by the nonlinear Neumann boundary condition \(\partial_{\nu} u = f (x, u) - u\) on \(\partial\Omega\). We show that any very weak solution of this problem belongs to \(L^{\infty}(\Omega)\) provided \(f\) satisfies the growth condition \(| f (x, s)| \leq C (1 + | s |^{p})\) for some \(p \in (1, p^*)\), where \(p^* := \frac{N-1}{N-2}\). If, in addition, \(f (x, s) \geq - C + \lambda s\) for some \(\lambda > 1\), then all positive very weak solutions are uniformly a priori bounded. We also show by means of examples that \(p^*\) is a sharp critical exponent. In particular, using variational methods we prove the following multiplicity result: if \(N \in \{3, 4\}\) and \(f (x, s) = s^{p}\) then there exists a domain \(\Omega\) and \(\varepsilon > 0\) such that our problem possesses at least two positive, unbounded, very weak solutions blowing up at a prescribed point of \(\partial\Omega\) provided \(p \in (p^*,p^*+ \varepsilon)\) . Our regularity results and a priori bounds for positive very weak solutions remain true if the right-hand side in the differential equation is of the form \(h (x, u)\) with \(h\) satisfying suitable growth conditions.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35D10 Regularity of generalized solutions of PDE (MSC2000)
35B35 Stability in context of PDEs
35B33 Critical exponents in context of PDEs
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Adimurthi: Hardy–Sobolev inequality in H 1({\(\Omega\)}) and its applications. Comm. Contemp. Math. 4, 409–434 (2002) · Zbl 1005.35072
[2] Balinsky A.A. and Tyukov A.E. (2006). On localization of pseudo-relativistic energy. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462: 897–912 · Zbl 1149.35340 · doi:10.1098/rspa.2005.1606
[3] Barbatis G., Filippas S. and Tertikas A. (2004). A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356: 2169–2196 · Zbl 1129.26019 · doi:10.1090/S0002-9947-03-03389-0
[4] Bidaut-Véron M.-F., Ponce A. and Véron L. (2007). Boundary singularities of positive solutions of some nonlinear elliptic equations. C. R. Acad. Sci. Paris Ser. I 344: 83–88 · Zbl 1241.35100
[5] Chipot M., Fila M. and Quittner P. (1991). Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Math. Univ. Comenianae 60: 35–103 · Zbl 0743.35038
[6] Chipot M. and Quittner P. (2004). Equilibria, connecting orbits and a priori bounds for semilinear parabolic equations with nonlinear boundary conditions. J. Dynam. Diff. Equ. 16: 91–138 · Zbl 1077.35065 · doi:10.1023/B:JODY.0000041282.14930.7a
[7] Chlebík M., Fila M. and Reichel W. (2003). Positive solutions of linear elliptic equations with critical growth in the Neumann boundary condition. NoDEA 10: 329–346 · Zbl 1274.35136 · doi:10.1007/s00030-003-1037-6
[8] Del Pino M., Musso M. and Pacard F. (2007). Boundary singularities for weak solutions of semilinear elliptic problems. J. Funct. Anal. 253: 241–272 · Zbl 1137.35038 · doi:10.1016/j.jfa.2007.05.023
[9] Dávila, J., Dupaigne, L., Montenegro, M.: The extremal solution of a boundary reaction problem. Commun. Pure Appl. Anal. (2008) (to appear) · Zbl 1156.35039
[10] Folland G.B. (1995). Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton · Zbl 0841.35001
[11] Garcí a-Melián, J., Morales-Rodrigo, C., Rossi, J.D., Suárez, A.: Nonnegative solutions to an elliptic problem with nonlinear absorption and a nonlinear incoming flux on the boundary. Annali Mat. Pura Appl. (2008) (to appear) · Zbl 1150.35011
[12] Gilbarg G. and Trudinger N.S. (1983). Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Heidelberg · Zbl 0562.35001
[13] Herbst I.W. (1977). Spectral theory of the operator (p 2 + m 2)1/2 Ze 2/r. Commun. Math. Phys. 53: 285–294 · Zbl 0375.35047 · doi:10.1007/BF01609852
[14] Hu B. (1994). Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Diff. Integral Equ. 7: 301–313 · Zbl 0820.35062
[15] McKenna P.J. and Reichel W. (2007). A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains. J. Funct. Anal. 244: 220–246 · Zbl 1231.35029 · doi:10.1016/j.jfa.2006.11.018
[16] Pacard F. (1993). Existence and convergence of positive weak solutions of \(-\Delta u = u^{\frac n{n-2}}\) in bounded domains of \({\mathbb{R}}^n\) , n 3. Calc. Var. Partial Diff. Equ. 1: 243–265 · Zbl 0822.35051 · doi:10.1007/BF01191296
[17] Pacard F. (1992). Existence de solutions faibles positives de u = u {\(\alpha\)} dans des ouverts bornés de R n , n 3. C. R. Acad. Sci. Paris Ser. I Math. 315: 793–798 · Zbl 0763.35019
[18] Quittner P. and Souplet Ph. (2004). A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces. Arch. Ration. Mech. Anal. 174: 49–81 · Zbl 1113.35062 · doi:10.1007/s00205-004-0323-8
[19] Souplet Ph. (2005). Optimal regularity conditions for elliptic problems via \(L^p_\delta\) spaces Duke Math. J. 127: 175–192 · Zbl 1130.35057 · doi:10.1215/S0012-7094-04-12715-0
[20] Stein E.M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton · Zbl 0207.13501
[21] Wang Z.-Q. and Zhu M. (2003). Hardy inequalities with boundary terms. Electron. J. Diff. Equ. 2003: 1–8 · Zbl 1012.35048 · doi:10.1016/S0022-0396(02)00059-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.