×

Bifurcation of multiple limit cycles for a rotor-active magnetic bearings system with time-varying stiffness. (English) Zbl 1147.37349

Summary: The bifurcations of multiple limit cycles for a rotor-active magnetic bearings (AMB) system with the time-varying stiffness are considered in this paper. The governing nonlinear equation of motion is established for the rotor-AMB system with single-degree-of-freedom and parametric excitation. Using the method of multiple scales, the governing nonlinear equation of motion is first transformed to the averaged equation, which is in the form of a \(Z_2\)-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, the bifurcation theory of planar dynamical system and the method of detection function are utilized to analyze the bifurcations of multiple limit cycles of the averaged equation. Four groups of parametric controlling conditions are given to obtain the configurations of compound eyes. It is found that there exist respectively at least 17, 19, 21 and 22 limit cycles in the rotor-AMB system with the time-varying stiffness under the different controlling conditions.

MSC:

37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C23 Bifurcation theory for ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF01081886 · Zbl 0411.58013 · doi:10.1007/BF01081886
[2] Awrejcewicz J., Mathematical Problems in Engineering
[3] M. Basso and R. Genesio, Bifurcation Control: Theory and Applications, Lecture Notes in Control and Information Sciences 293 (2003) pp. 127–154. · doi:10.1007/978-3-540-44925-6_7
[4] DOI: 10.1142/S0218127401002079 · Zbl 1090.37558 · doi:10.1142/S0218127401002079
[5] DOI: 10.1006/jdeq.2000.3828 · Zbl 0986.34029 · doi:10.1006/jdeq.2000.3828
[6] Han M., Chinese Ann. Math. 23 pp 143–
[7] DOI: 10.1006/jdeq.1998.3549 · Zbl 0926.34033 · doi:10.1006/jdeq.1998.3549
[8] Li J., Acta Math. Sin. 28 pp 509–
[9] Li J., Chinese Ann. Math. B 8 pp 391–
[10] J. Li and Z. Liu, Ordinary and Delay Differential Equations, {\(\pi\)} Pitman Research Notes in Math. Series 272 (1992) pp. 116–128.
[11] Li J., Int. J. Bifurcation and Chaos 11 pp 2287–
[12] Li J., Dyn. Contin. Discr. Impul. Syst. 8 pp 519–
[13] Li J., Sci. China (Series A) 45 pp 817–
[14] DOI: 10.1142/S0218127402005698 · Zbl 1047.34043 · doi:10.1142/S0218127402005698
[15] DOI: 10.1142/S0218127405012065 · Zbl 1077.34037 · doi:10.1142/S0218127405012065
[16] DOI: 10.1016/j.chaos.2005.10.065 · Zbl 1134.70010 · doi:10.1016/j.chaos.2005.10.065
[17] Nayfeh A. H., Nonlinear Oscillations (1979)
[18] DOI: 10.1142/S0218127404011491 · Zbl 1066.34035 · doi:10.1142/S0218127404011491
[19] DOI: 10.1016/S0007-4497(03)00019-8 · Zbl 1034.34034 · doi:10.1016/S0007-4497(03)00019-8
[20] Shang D. S., Math. Applicata 18 pp 580–
[21] Wang D., Rand. Comput. Dyn. 2 pp 261–
[22] DOI: 10.1006/jdeq.1999.3739 · Zbl 0957.34041 · doi:10.1006/jdeq.1999.3739
[23] DOI: 10.1007/s10255-004-0158-y · Zbl 1062.34031 · doi:10.1007/s10255-004-0158-y
[24] DOI: 10.3934/cpaa.2004.3.515 · Zbl 1085.34028 · doi:10.3934/cpaa.2004.3.515
[25] DOI: 10.1142/S0218127401003334 · doi:10.1142/S0218127401003334
[26] DOI: 10.1016/j.chaos.2004.09.100 · Zbl 1143.74334 · doi:10.1016/j.chaos.2004.09.100
[27] DOI: 10.1007/s11071-005-7959-2 · Zbl 1142.70325 · doi:10.1007/s11071-005-7959-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.