×

Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type. (English) Zbl 1147.45005

A sufficient condition for the existence of monotone solutions of the following nonlinear quadratic integral equation of Volterra type
\[ x(t)= a(t)+ g(x(t)) \int_0^t v(t,s,x(s))\, \quad\text{for all }t\in[0,T], \]
is established. The approach is based on Darbo’s fixed point theorem and the measure of noncompactness introduced by J. Banaś and L. Olszowy [in Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 41, 13–23 (2001; Zbl 0999.47041)].

MSC:

45G10 Other nonlinear integral equations
47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

Citations:

Zbl 0999.47041
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] R.P. Agarwal and D. O’Regan, Global existence for nonlinear operator inclusion , Comput. Math. Appl. 38 (1999), 131-139. · Zbl 0991.47051
[2] R.P. Agarwal, D. O’Regan and P.J.Y. Wong, Positive solutions of differential, difference and integral equations , Kluwer Academic, Dordecht, 1999. · Zbl 1157.34301
[3] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces , Lect. Notes Pure Appl. Math. 60 , Marcel Dekker, New York, 1980. · Zbl 0441.47056
[4] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems for some quadratic integral equations , J. Math. Anal. Appl. 222 (1998), 276-285. · Zbl 0913.45001
[5] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type , Comput. Math. Appl. 47 (2004), 271-279. · Zbl 1059.45002
[6] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity , Comment. Math. 41 (2001), 13-23. · Zbl 0999.47041
[7] J. Banaś, J. Rocha and K.B. Sdarangani, Solvability of a nonlinear integral equation of Volterra type , J. Comput. Appl. Math. 157 (2003), 31-48. · Zbl 1026.45006
[8] J. Banaś, J.R. Rodriguez and K. Sdarangani, On a class of Urysohn-Sieltjes quadratic integral equations and their applications , J. Comput. Appl. Math. 113 (2000), 35-50. · Zbl 0943.45002
[9] ——–, On a nonlinear quadratic integral equation of Urysohn-Stieltjes type and its applications , Nonlinear Anal. 47 (2001), 1175-1186. · Zbl 1042.45502
[10] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation , J. Math. Anal. Appl. 284 (2003), 165-173. · Zbl 1029.45003
[11] ——–, An application of a measure of noncompactness in the study of asymptotic stability , Appl. Math. Lett. 16 (2003), 1-6. · Zbl 1015.47034
[12] J. Banaś and K. Sdarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications , Comput. Math. Appl. 41 (2001), 1535-1544. · Zbl 0986.45006
[13] B. Cahlon and M. Eskin, Existence theorems for an integral equation of the Chandrasekhar \(H\)-equation with perturbation , J. Math. Anal. Appl. 83 (1981), 159-171. · Zbl 0471.45002
[14] C. Corduneanu, Integral equations and applications , Cambridge University Press, Cambridge, MA, 1991. · Zbl 0714.45002
[15] G. Darbo, Punti uniti in transformazioni a condominio non compatto , Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. · Zbl 0064.35704
[16] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases , Appl. Anal. 34 (1989), 261-266. · Zbl 0697.45004
[17] D. O’Regan and M. Meehan, Existence theory for nonlinear integral and integrodifferential equations , Kluwer Academic, Dordrecht, 1998. · Zbl 0905.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.