zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type. (English) Zbl 1147.45005
A sufficient condition for the existence of monotone solutions of the following nonlinear quadratic integral equation of Volterra type $$x(t)= a(t)+ g(x(t)) \int_0^t v(t,s,x(s))\, \quad\text{for all }t\in[0,T],$$ is established. The approach is based on Darbo’s fixed point theorem and the measure of noncompactness introduced by {\it J. Banaś} and {\it L. Olszowy} [in Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 41, 13--23 (2001; Zbl 0999.47041)].

MSC:
45G10Nonsingular nonlinear integral equations
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
WorldCat.org
Full Text: DOI Euclid
References:
[1] R.P. Agarwal and D. O’Regan, Global existence for nonlinear operator inclusion , Comput. Math. Appl. 38 (1999), 131-139. · Zbl 0991.47051 · doi:10.1016/S0898-1221(99)00292-8
[2] R.P. Agarwal, D. O’Regan and P.J.Y. Wong, Positive solutions of differential, difference and integral equations , Kluwer Academic, Dordecht, 1999. · Zbl 1157.34301
[3] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces , Lect. Notes Pure Appl. Math. 60 , Marcel Dekker, New York, 1980. · Zbl 0441.47056
[4] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems for some quadratic integral equations , J. Math. Anal. Appl. 222 (1998), 276-285. · Zbl 0913.45001 · doi:10.1006/jmaa.1998.5941
[5] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type , Comput. Math. Appl. 47 (2004), 271-279. · Zbl 1059.45002 · doi:10.1016/S0898-1221(04)90024-7
[6] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity , Comment. Math. 41 (2001), 13-23. · Zbl 0999.47041
[7] J. Banaś, J. Rocha and K.B. Sdarangani, Solvability of a nonlinear integral equation of Volterra type , J. Comput. Appl. Math. 157 (2003), 31-48. · Zbl 1026.45006 · doi:10.1016/S0377-0427(03)00373-X
[8] J. Banaś, J.R. Rodriguez and K. Sdarangani, On a class of Urysohn-Sieltjes quadratic integral equations and their applications , J. Comput. Appl. Math. 113 (2000), 35-50. · Zbl 0943.45002 · doi:10.1016/S0377-0427(99)00242-3
[9] --------, On a nonlinear quadratic integral equation of Urysohn-Stieltjes type and its applications , Nonlinear Anal. 47 (2001), 1175-1186. · Zbl 1042.45502 · doi:10.1016/S0362-546X(01)00256-5
[10] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation , J. Math. Anal. Appl. 284 (2003), 165-173. · Zbl 1029.45003 · doi:10.1016/S0022-247X(03)00300-7
[11] --------, An application of a measure of noncompactness in the study of asymptotic stability , Appl. Math. Lett. 16 (2003), 1-6. · Zbl 1015.47034 · doi:10.1016/S0893-9659(02)00136-2
[12] J. Banaś and K. Sdarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications , Comput. Math. Appl. 41 (2001), 1535-1544. · Zbl 0986.45006 · doi:10.1016/S0898-1221(01)00118-3
[13] B. Cahlon and M. Eskin, Existence theorems for an integral equation of the Chandrasekhar $H$-equation with perturbation , J. Math. Anal. Appl. 83 (1981), 159-171. · Zbl 0471.45002 · doi:10.1016/0022-247X(81)90254-7
[14] C. Corduneanu, Integral equations and applications , Cambridge University Press, Cambridge, MA, 1991. · Zbl 0714.45002
[15] G. Darbo, Punti uniti in transformazioni a condominio non compatto , Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. · Zbl 0064.35704 · numdam:RSMUP_1955__24__84_0 · eudml:106925
[16] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases , Appl. Anal. 34 (1989), 261-266. · Zbl 0697.45004 · doi:10.1080/00036818908839899
[17] D. O’Regan and M. Meehan, Existence theory for nonlinear integral and integrodifferential equations , Kluwer Academic, Dordrecht, 1998. · Zbl 0905.45003