×

zbMATH — the first resource for mathematics

Nonlinear integrodifferential equations of mixed type in Banach spaces. (English) Zbl 1147.45009
The authors prove two existence theorems for the integrodifferential equation \[ x^\prime(t)=f(t,x(t),\int_0^t k_1(t,s)g(s,x(s))\,ds,\int_0^a k_2(t,s)h(s,x(s))ds),\;x(0)=x_0, \] where in the first theorem \(f,g,h,x\) are Banach space valued functions and the integrals are taken in the sense of Henstock and in the second theorem \(f,g,h,x\) also map weakly convergent sequences into weakly convergent sequences.

MSC:
45N05 Abstract integral equations, integral equations in abstract spaces
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, vol. 4 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 1994. · Zbl 0807.26004
[2] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, NY, USA, 1991. · Zbl 0745.26006
[3] P. Y. Lee, Lanzhou Lectures on Henstock Integration, vol. 2 of Series in Real Analysis, World Scientific, Teaneck, NJ, USA, 1989. · Zbl 0699.26004
[4] Z. Artstein, “Topological dynamics of ordinary differential equations and Kurzweil equations,” Journal of Differential Equations, vol. 23, no. 2, pp. 224-243, 1977. · Zbl 0353.34044
[5] T. S. Chew and F. Flordeliza, “On x\(^{\prime}\)=f(t,x) and Henstock-Kurzweil integrals,” Differential and Integral Equations, vol. 4, no. 4, pp. 861-868, 1991. · Zbl 0733.34004
[6] I. Kubiaczyk and A. Sikorska-Nowak, “Differential equations in Banach space and Henstock-Kurzweil integrals,” Discussiones Mathematicae. Differential Inclusions, vol. 19, no. 1-2, pp. 35-43, 1999. · Zbl 0962.34043
[7] J. Kurzweil, “Generalized ordinary differential equations and continuous dependence on a parameter,” Czechoslovak Mathematical Journal, vol. 7(82), pp. 418-449, 1957. · Zbl 0090.30002
[8] S. S. Cao, “The Henstock integral for Banach-valued functions,” Southeast Asian Bulletin of Mathematics, vol. 16, no. 1, pp. 35-40, 1992. · Zbl 0749.28007
[9] B. J. Pettis, “On integration in vector spaces,” Transactions of the American Mathematical Society, vol. 44, no. 2, pp. 277-304, 1938. · Zbl 0019.41603
[10] M. Cichoń, I. Kubiaczyk, and A. Sikorska-Nowak, “Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals and some existence theorems,” in International Scientific Conference on Mathematics (Herl/any, 1999), pp. 53-56, University of Technology, Ko\vsice, Slovakia, 2000. · Zbl 0978.34046
[11] R. P. Agarwal, M. Meehan, and D. O/Regan, “Positive solutions of singular integral equations-a survey,” Dynamic Systems and Applications, vol. 14, no. 1, pp. 1-37, 2005. · Zbl 1076.45001
[12] R. P. Agarwal, M. Meehan, and D. O/Regan, Nonlinear Integral Equations and Inlusions, Nova Science Publishers, Hauppauge, NY, USA, 2001.
[13] R. P. Agarwal and D. O/Regan, “Existence results for singular integral equations of Fredholm type,” Applied Mathematics Letters, vol. 13, no. 2, pp. 27-34, 2000. · Zbl 0973.45002
[14] G. L. Karakostas and P. Ch. Tsamatos, “Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems,” Electronic Journal of Differential Equations, vol. 2002, no. 30, pp. 1-17, 2002. · Zbl 0998.45004
[15] A. Karoui, “Existence and approximate solutions of nonlinear integral equations,” Journal of Inequalities and Applications, vol. 2005, no. 5, pp. 569-581, 2005. · Zbl 1099.45007
[16] R. K. Miller, J. A. Nohel, and J. S. W. Wong, “A stability theorem for nonlinear mixed integral equations,” Journal of Mathematical Analysis and Applications, vol. 25, pp. 446-449, 1969. · Zbl 0167.40802
[17] D. O/Regan, “Existence results for nonlinear integral equations,” Journal of Mathematical Analysis and Applications, vol. 192, no. 3, pp. 705-726, 1995. · Zbl 0851.45003
[18] D. O/Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, vol. 445 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. · Zbl 0905.45003
[19] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker , New York, NY, USA, 1980. · Zbl 0441.47056
[20] F. S. De Blasi, “On a property of the unit sphere in a Banach space,” Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 21(69), no. 3-4, pp. 259-262, 1977. · Zbl 0365.46015
[21] J. Banaś and J. Rivero, “On measures of weak noncompactness,” Annali di Matematica Pura ed Applicata, vol. 151, no. 1, pp. 213-224, 1988. · Zbl 0653.47035
[22] H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 4, no. 5, pp. 985-999, 1980. · Zbl 0462.34041
[23] I. Kubiaczyk, “On a fixed point theorem for weakly sequentially continuous mappings,” Discussiones Mathematicae. Differential Inclusions, vol. 15, no. 1, pp. 15-20, 1995. · Zbl 0832.47046
[24] M. Cichoń, I. Kubiaczyk, and A. Sikorska-Nowak, “The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem,” Czechoslovak Mathematical Journal, vol. 54(129), no. 2, pp. 279-289, 2004. · Zbl 1080.34550
[25] R. A. Gordon, “Riemann integration in Banach spaces,” The Rocky Mountain Journal of Mathematics, vol. 21, no. 3, pp. 923-949, 1991. · Zbl 0764.28008
[26] M. Cichoń, “Convergence theorems for the Henstock-Kurzweil-Pettis integral,” Acta Mathematica Hungarica, vol. 92, no. 1-2, pp. 75-82, 2001. · Zbl 1001.26003
[27] R. H. Martin Jr., “Nonlinear Operators and Differential Equations in Banach Spaces,” Robert E. Krieger, Melbourne, Fla, USA, 1987. · Zbl 0649.47039
[28] G. Ye, P. Y. Lee, and C. Wu, “Convergence theorems of the Denjoy-Bochner, Denjoy-Pettis and Denjoy-Dunford integrals,” Southeast Asian Bulletin of Mathematics, vol. 23, no. 1, pp. 135-143, 1999. · Zbl 0940.28012
[29] A. P. Solodov, “On conditions for the differentiability almost everywhere of absolutely continuous Banach-valued functions,” Moscow University Mechanics Bulletin, vol. 54, no. 4, pp. 29-32, 1999. · Zbl 0961.26012
[30] A. Ambrosetti, “Un teorema di esistenza per le equazioni differenziali negli spazi di Banach,” Rendiconti del Seminario Matematico della Università di Padova, vol. 39, pp. 349-361, 1967. · Zbl 0174.46001
[31] M. Cichoń, “On solutions of differential equations in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 60, no. 4, pp. 651-667, 2005. · Zbl 1061.34043
[32] A. R. Mitchell and C. Smith, “An existence theorem for weak solutions of differential equations in Banach spaces,” in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), V. Lakshmikantham, Ed., pp. 387-403, Academic Press, New York, NY, USA, 1978. · Zbl 0452.34054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.