×

On \(\pi \)-images of locally separable metric spaces. (English) Zbl 1147.54318

Summary: We characterize \(\pi\)-images of locally separable metric spaces by means of covers having the \(\pi\)-property. As an application, we obtain characterizations of compact-covering (sequence-covering, pseudo-sequence-covering, and sequentially quotient) \(\pi\)-images of locally sparable metric spaces.

MSC:

54E40 Special maps on metric spaces
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. V. Arhangel’skiĭ, “Mappings and spaces,” Russian Mathematical Surveys, vol. 21, no. 4, pp. 115-162, 1966.
[2] Y. Tanaka, “Theory of k-networks. II,” Questions and Answers in General Topology, vol. 19, no. 1, pp. 27-46, 2001. · Zbl 0970.54023
[3] S. Lin, C. Liu, and M. Dai, “Images on locally separable metric spaces,” Acta Mathematica Sinica, vol. 13, no. 1, pp. 1-8, 1997. · Zbl 0881.54014 · doi:10.1007/BF02560519
[4] G. Ying, “On compact images of locally separable metric spaces,” Topology Proceedings, vol. 27, no. 1, pp. 351-360, 2003. · Zbl 1072.54020
[5] Y. Ikeda, C. Liu, and Y. Tanaka, “Quotient compact images of metric spaces, and related matters,” Topology and Its Applications, vol. 122, no. 1-2, pp. 237-252, 2002. · Zbl 0994.54015 · doi:10.1016/S0166-8641(01)00145-6
[6] Y. Tanaka and Y. Ge, “Around quotient compact images of metric spaces, and symmetric spaces,” Houston Journal of Mathematics, vol. 32, no. 1, pp. 99-117, 2006. · Zbl 1102.54034
[7] Y. Ge, “On pseudo-sequence coverings, \pi -images of metric spaces,” Matematichki Vesnik, vol. 57, no. 3-4, pp. 113-120, 2005. · Zbl 1100.41013
[8] R. Engelking, General Topology, PWN-Polish Scientific, Warsaw, Poland, 1977. · Zbl 0373.54002
[9] H. Chen, “Compact-covering maps and k-networks,” Proceedings of the American Mathematical Society, vol. 131, no. 8, pp. 2623-2632, 2003. · Zbl 1025.54022 · doi:10.1090/S0002-9939-02-06768-0
[10] P. F. Yan, “The compact images of metric spaces,” Journal of Mathematical Study, vol. 30, no. 2, pp. 185-187, 1997 (Chinese). · Zbl 0918.54029
[11] J. A. Guthrie, “A characterization of \aleph 0-spaces,” General Topology and Its Applications, vol. 1, no. 2, pp. 105-110, 1971. · Zbl 0216.19103 · doi:10.1016/0016-660X(71)90116-4
[12] Z. M. Gao, “\aleph -space is invariant under perfect mappings,” Questions and Answers in General Topology, vol. 5, no. 2, pp. 271-279, 1987. · Zbl 0636.54026
[13] S. Lin and P. Yan, “Notes on cfp-covers,” Commentationes Mathematicae Universitatis Carolinae, vol. 44, no. 2, pp. 295-306, 2003. · Zbl 1100.54021
[14] S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, China, 2002. · Zbl 1004.54001
[15] E. Michael, “\aleph 0-spaces,” Journal of Mathematics and Mechanics, vol. 15, pp. 983-1002, 1966. · Zbl 0148.16701
[16] F. Siwiec, “Sequence-covering and countably bi-quotient mappings,” Applied General Topology, vol. 1, no. 2, pp. 143-154, 1971. · Zbl 0218.54016 · doi:10.1016/0016-660X(71)90120-6
[17] J. R. Boone and F. Siwiec, “Sequentially quotient mappings,” Czechoslovak Mathematical Journal, vol. 26(101), no. 2, pp. 174-182, 1976. · Zbl 0334.54003
[18] S. P. Franklin, “Spaces in which sequences suffice,” Fundamenta Mathematicae, vol. 57, pp. 107-115, 1965. · Zbl 0132.17802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.