×

Pairwise weakly regular-Lindelöf spaces. (English) Zbl 1147.54320

Summary: We introduce and study pairwise weakly regular-Lindelöf bitopological spaces and obtain some results. Furthermore, we study pairwise weakly regular-Lindelöf subspaces and subsets, and investigate some of their characterizations. We also show that the pairwise weakly regular-Lindelöf property is not a hereditary property. Some counterexamples will be considered in order to establish some of their relations.

MSC:

54E55 Bitopologies
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. C. Kelly, “Bitopological spaces,” Proceedings of the London Mathematical Society, vol. 13, no. 3, pp. 71-89, 1963. · Zbl 0107.16401
[2] Z. Frolík, “Generalisations of compact and Lindelöf spaces,” Czechoslovak Mathematical Journal, vol. 9 (84), pp. 172-217, 1959, (Russian). · Zbl 0098.14201
[3] F. Cammaroto and G. Santoro, “Some counterexamples and properties on generalizations of Lindelöf spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 4, pp. 737-746, 1996. · Zbl 0860.54033
[4] A. Kılı\ccman and A. J. Fawakhreh, “On some generalizations of Lindelöf spaces and its subspaces,” Bulletin of Pure & Applied Sciences. Section E, vol. 19, no. 2, pp. 505-515, 2000. · Zbl 1082.54520
[5] A. J. Fawakhreh and A. Kılı\ccman, “On generalizations of regular-Lindelöf spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 9, pp. 535-539, 2001. · Zbl 1009.54026
[6] A. Kılı\ccman and A. J. Fawakhreh, “Some counterexamples and properties on subspaces of generalized regular-Lindelöf spaces,” Tamkang Journal of Mathematics, vol. 32, no. 3, pp. 237-245, 2001. · Zbl 1006.54048
[7] A. Kılı\ccman and Z. Salleh, “On pairwise Lindelöf bitopological spaces,” Topology and Its Applications, vol. 154, no. 8, pp. 1600-1607, 2007. · Zbl 1184.54028
[8] Z. Salleh and A. Kılı\ccman, “Pairwise weakly Lindelöf bitopological spaces,” submitted. · Zbl 1277.54024
[9] A. J. Fawakhreh, Properties and counterexamples on generalizations of Lindelöf spaces, Ph.D. thesis, University of Putra Malaysia, Serdang, Malaysia, 2002. · Zbl 1017.54008
[10] A. Kılı\ccman and Z. Salleh, “Mappings and pairwise continuity on pairwise Lindelöf bitopological spaces,” Albanian Journal of Mathematics, vol. 1, no. 2, pp. 115-120, 2007. · Zbl 1131.54016
[11] F. H. Khedr and A. M. Al-Shibani, “On pairwise super continuous mappings in bitopological spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 4, pp. 715-722, 1991. · Zbl 0769.54033
[12] A. R. Singal and S. P. Arya, “On pairwise almost regular spaces,” Glasnik Matemati\vcki, vol. 6, no. 26, pp. 335-343, 1971. · Zbl 0227.54025
[13] A. A. Fora and H. Z. Hdeib, “On pairwise Lindelöf spaces,” Revista Colombiana de Matemáticas, vol. 17, no. 1-2, pp. 37-57, 1983. · Zbl 0537.54020
[14] M. K. Singal and A. R. Singal, “Some more separation axioms in bitopological spaces,” Annales de la Societé Scientifique de Bruxelles, vol. 84, pp. 207-230, 1970. · Zbl 0196.26101
[15] Z. Salleh and A. Kılı\ccman, “Pairwise nearly Lindelöf bitopological spaces,” submitted. · Zbl 1277.54024
[16] A. Kılı\ccman and Z. Salleh, “Pairwise almost Lindelöf bitopological spaces,” in Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Their Applications, Universiti Sains Malaysia, Penang, Malaysia, June 2006.
[17] A. Kılı\ccman and Z. Salleh, “Pairwise almost regular-Lindelöf spaces,” submitted. · Zbl 1147.54320
[18] Z. Salleh and A. Kılı\ccman, “Pairwise nearly regular-Lindelöf spaces,” submitted. · Zbl 1277.54024
[19] L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Springer, New York, NY, USA, 2nd edition, 1978. · Zbl 0386.54001
[20] S. Willard, General Topology, Addison-Wesley, Don Mills, Ontario, Canada, 1970. · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.