zbMATH — the first resource for mathematics

Dynamical models for circle covering: Brownian motion and Poisson updating. (English) Zbl 1147.60063
(Authors’ summary slightly altered) The authors consider two dynamical variants of Dvoretzky’s classical problem of random interval coverings of the unit circle, the latter having been completely solved by L. Shepp [Isr. J. Math. 11, 328–345 (1972; Zbl 0241.60008)]. In the first model, the centers of the intervals perform independent Brownian motions while in the second one, the positions of the intervals are updated according to independent Poisson processes where an interval of length \(\ell \) is updated at rate \(\ell ^{-\alpha }\), with \(\alpha >0\) a parameter. For the model with Brownian motions, a special case of the authors’ results is that if the length of the \(n\)th interval is \(c/n\), then there are times at which a fixed point is not covered if and only if \(c<2\) and there are times at which the circle is not fully covered if and only if \(c<3\). For the Poisson updating model, analogous results with \(c<\alpha \) and \(c<\alpha +1\) instead are obtained. The Hausdorff dimension of the set of exceptional times for some of these questions is also computed.

60K99 Special processes
Full Text: DOI arXiv
[1] Barral, J. and Fan, A.-H. (2005). Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. 129 275-317. · Zbl 1068.28005
[2] van den Berg, J., Meester, R. and White, D. G. (1997). Dynamic Boolean models. Stochastic Process. Appl. 69 247-257. · Zbl 0911.60083
[3] Billard, P. (1965). Séries de Fourier aléatoirement bornées, continues, uniformément convergentes. Ann. Sci. École Norm. Sup. (3) 82 131-179. · Zbl 0134.34102
[4] Dvoretzky, A. (1956). On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. U.S.A. 42 199-203. · Zbl 0074.12301
[5] Fan, A.-H. (2002). How many intervals cover a point in Dvoretzky covering? Israel J. Math. 131 157-184. · Zbl 1009.60003
[6] Fan, A.-H. and Wu, J. (2004). On the covering by small random intervals. Ann. Inst. H. Poincaré Probab. Statist. 40 125-131. · Zbl 1037.60010
[7] Fitzsimmons, P. J. and Getoor, R. K. (1988). On the potential theory of symmetric Markov processes. Math. Ann. 281 495-512. · Zbl 0627.60067
[8] Getoor, R. K. and Sharp, M. J. (1984). Naturality, standardness, and weak duality for Markov processes. Z. Wahrsch. Verw. Gebiete 67 1-62. · Zbl 0553.60070
[9] Häggström, O., Peres, Y. and Steif, J. (1997). Dynamical percolation. Ann. Inst. H. Poincaré Probab. Statist. 33 497-528. · Zbl 0894.60098
[10] Kahane, J. P. (1959). Sur le recouvrement d’un cercle par des arcs disposés au hasard. C. R. Acad. Sci. Paris 248 184-186. · Zbl 0090.35801
[11] Kahane, J. P. (1985). Some Random Series of Functions , 2nd ed. Cambridge Univ. Press. · Zbl 0571.60002
[12] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane . Amer. Math. Soc., Providence, RI. · Zbl 1074.60002
[13] Mandelbrot, B. (1972). On Dvoretzky coverings for the circle. Z. Wahrsch. Verw. Gebiete 22 158-160. · Zbl 0222.60044
[14] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces . Cambridge Univ. Press. · Zbl 0819.28004
[15] Schramm, O. and Steif, J. E. (2007). Quantitative noise sensitivity and exceptional times for percolation. Ann. Math. · Zbl 1213.60160
[16] Shepp, L. A. (1972). Covering the circle with random arcs. Israel J. Math. 11 328-345. · Zbl 0241.60008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.