Li, Yehua; Wang, Naisyin; Hong, Meeyoung; Turner, Nancy D.; Lupton, Joanne R.; Carroll, Raymond J. Nonparametric estimation of correlation functions in longitudinal and spatial data, with application to colon carcinogenesis experiments. (English) Zbl 1147.62036 Ann. Stat. 35, No. 4, 1608-1643 (2007). Summary: In longitudinal and spatial studies, observations often demonstrate strong correlations that are stationary in time or distance lags, and the times or locations of these data being sampled may not be homogeneous. We propose a nonparametric estimator of the correlation function in such data, using kernel methods. We develop a pointwise asymptotic normal distribution for the proposed estimator, when the number of subjects is fixed and the number of vectors or functions within each subject goes to infinity. Based on the asymptotic theory, we propose a weighted block bootstrapping method for making inferences about the correlation function, where the weights account for the inhomogeneity of the distribution of the times or locations. The method is applied to a data set from a colon carcinogenesis study, in which colonic crypts were sampled from a piece of a colon segment from each of the 12 rats in the experiment and the expression level of p27, an important cell cycle protein, was then measured for each cell within the sampled crypts. A simulation study is also provided to illustrate the numerical performance of the proposed method. Cited in 12 Documents MSC: 62G08 Nonparametric regression and quantile regression 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62G20 Asymptotic properties of nonparametric inference 62P10 Applications of statistics to biology and medical sciences; meta analysis 62G09 Nonparametric statistical resampling methods 62H20 Measures of association (correlation, canonical correlation, etc.) Keywords:dependent data; functional data; gene expression; kernel regression; time series Software:fda (R) × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Besag, J. and Higdon, D. (1999). Baysian analysis of agricultural field experiments (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 61 691–746. JSTOR: · Zbl 0951.62091 · doi:10.1111/1467-9868.00201 [2] Besag, J., York, J. and Mollié, A. (1991). Baysian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43 1–59. · Zbl 0760.62029 · doi:10.1007/BF00116466 [3] Cressie, N. A. C. (1993). Statistics for Spatial Data . Wiley, New York. · Zbl 0825.62477 [4] Cressie, N. A. C. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. \JASA 94 1330–1340. JSTOR: · Zbl 0999.62073 · doi:10.2307/2669946 [5] Diggle, P. and Verbyla, A. P. (1998). Nonparametric estimation of covariance structure in longitudinal data. \BMCS 54 401–415. · Zbl 1058.62600 · doi:10.2307/3109751 [6] Guan, Y., Sherman, M. and Calvin, J. A. (2004). A nonparametric test for spatial isotropy using subsampling. \JASA 99 810–821. · Zbl 1117.62348 · doi:10.1198/016214504000001150 [7] Hall, P., Fisher, N. I. and Hoffmann, B. (1994). On the nonparametric estimation of covariance functions. Ann. Statist. 22 2115–2134. · Zbl 0828.62036 · doi:10.1214/aos/1176325774 [8] Hall, P. and Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Related Fields 99 399–424. · Zbl 0799.62102 · doi:10.1007/BF01199899 [9] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables . Wolters-Noordhoff, Groningen. · Zbl 0219.60027 [10] Karr, A. F. (1986). Inference for stationary random fields given Poisson samples. Adv. in Appl. Probab. 18 406–422. JSTOR: · Zbl 0598.60052 · doi:10.2307/1427306 [11] Morris, J. S., Wang, N., Lupton, J. R., Chapkin, R. S., Turner, N. D., Hong, M. Y. and Carroll, R. J. (2001). Parametric and nonparametric methods for understanding the relationship between carcinogen-induced DNA adduct levels in distal and proximal regions of the colon. \JASA 96 816–826. JSTOR: · Zbl 1072.62666 · doi:10.1198/016214501753208528 [12] Politis, D. N. and Sherman, M. (2001). Moment estimation for statistics from marked point processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 261–275. JSTOR: · Zbl 0979.62074 · doi:10.1111/1467-9868.00284 [13] Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis . Springer, New York. · Zbl 0882.62002 [14] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics . Wiley, New York. · Zbl 0538.62002 [15] Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap . Springer, New York. · Zbl 0947.62501 [16] Stein, M. L. (1999). Interpolation of Spatial Data : Some Theory for Kriging . Springer, New York. · Zbl 0924.62100 [17] Stein, M. L. (2005). Space–time covariance functions. \JASA 100 310–321. · Zbl 1117.62431 · doi:10.1198/016214504000000854 [18] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. \JASA 100 577–590. · Zbl 1117.62451 · doi:10.1198/016214504000001745 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.