Hariz, Samir Ben; Wylie, Jonathan J.; Zhang, Qiang Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences. (English) Zbl 1147.62043 Ann. Stat. 35, No. 4, 1802-1826 (2007). Summary: Let \((X_i)_{i=1,\dots,n}\) be a possibly nonstationary sequence such that \({\mathcal L}(X_i)= P_n\) if \(i\leq n\theta\) and \({\mathcal L}(X_i)= Q_n\) if \(i>n\theta\), where \(0<\theta<1\) is the location of the change-point to be estimated. We construct a class of estimators based on empirical measures and a seminorm on the space of measures defined through a family of functions \({\mathcal F}\). We prove the consistency of the estimator and give rates of convergence under very general conditions. In particular, the \(1/n\) rate is achieved for a wide class of processes including long-range dependent sequences and even nonstationary ones. The approach unifies, generalizes and improves on existing results for both parametric and nonparametric change-point estimation, applied to independent, short-range dependent and as well long-range dependent sequences. Cited in 19 Documents MSC: 62G20 Asymptotic properties of nonparametric inference 62G05 Nonparametric estimation 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62F12 Asymptotic properties of parametric estimators 62G30 Order statistics; empirical distribution functions Keywords:long-range dependence; short-range dependence; consistency × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Arcones, M. A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242–2274. · Zbl 0839.60024 · doi:10.1214/aop/1176988503 [2] Ben Hariz, S. and Wylie, J. J. (2005). Rates of convergence for the change-point estimator for long-range dependent sequences. Statist. Probab. Lett. 73 155–164. · Zbl 1081.62061 · doi:10.1016/j.spl.2005.03.008 [3] Brockwell, P. J. and Davis, R. A. (1991). Time Series : Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080 [4] Carlstein, E. (1988). Nonparametric change-point estimation. Ann. Statist. 16 188–197. · Zbl 0637.62041 · doi:10.1214/aos/1176350699 [5] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis . Wiley, Chichester. · Zbl 0884.62023 [6] Dümbgen, L. (1991). The asymptotic behavior of some nonparametric change-point estimators. Ann. Statist. 19 1471–1495. · Zbl 0776.62032 · doi:10.1214/aos/1176348257 [7] Ferger, D. (1994). On the rate of almost sure convergence of Dümbgen’s change-point estimators. Statist. Probab. Lett. 19 27–31. · Zbl 0795.62028 · doi:10.1016/0167-7152(94)90064-7 [8] Ferger, D. (2001). Exponential and polynomial tailbounds for change-point estimators. J. Statist. Plann. Inference 92 73–109. · Zbl 0997.62018 · doi:10.1016/S0378-3758(00)00148-8 [9] Ferger, D. (2004). Boundary estimation based on set-indexed empirical processes. J. Nonparametr. Statist. 16 245–260. · Zbl 1049.62031 · doi:10.1080/10485250310001622857 [10] Giraitis, L., Leipus, R. and Surgailis, D. (1996). The change-point problem for dependent observations. J. Statist. Plann. Inference 53 297–310. · Zbl 0856.62073 · doi:10.1016/0378-3758(95)00148-4 [11] Horváth, L. and Kokoszka, P. (1997). The effect of long-range dependence on change-point estimators. J. Statist. Plann. Inference 64 57–81. · Zbl 0946.62078 · doi:10.1016/S0378-3758(96)00208-X [12] Kokoszka, P. and Leipus, R. (1998). Change-point in the mean of dependent observations. Statist. Probab. Lett. 40 385–393. · Zbl 0935.62097 · doi:10.1016/S0167-7152(98)00145-X [13] Móricz, F. (1976). Moment inequalities and the strong laws of large numbers. Z. Wahrsch. Verw. Gebiete . 35 299–314. · Zbl 0314.60023 · doi:10.1007/BF00532956 [14] van der Vaart, A. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York. · Zbl 0862.60002 [15] Yao, Y.-C., Huang, D. and Davis, R. A. (1994). On almost sure behavior of change-point estimators. In Change-Point Problems (E. Carlstein, H.-G. Müller and D. Siegmund, eds.) 359–372. IMS, Hayward, CA. · Zbl 1163.62317 · doi:10.1214/lnms/1215463136 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.