×

On the Lamb vector divergence in Navier-Stokes flows. (English) Zbl 1147.76015

Summary: We explore the mathematical and physical properties of Lamb vector divergence. Toward this aim, the instantaneous and mean dynamics of Lamb vector divergence are examined in several analytic and turbulent flow examples relative to its capacity to identify and characterize spatially localized motions having a distinct capacity to effect a time rate of change of momentum. In this context, the transport equation for Lamb vector divergence is developed and shown to accurately describe the dynamical mechanisms by which adjacent high- and low-momentum fluid parcels interact to effect a time rate of change of momentum and generate forces such as drag. From this, a transport-equation-based framework is developed that captures the self-sustaining spatiotemporal interactions between coherent motions, e.g. ejections and sweeps in turbulent wall flows, as predicted by the binary source-sink distribution of Lamb vector divergence. New insight into coherent motion development and evolution is found through the analysis of Lamb vector divergence.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1017/S002211200000313X · Zbl 1017.76024
[2] DOI: 10.1016/S0020-7225(96)00084-5 · Zbl 0908.76020
[3] DOI: 10.1006/jfls.2000.0345
[4] DOI: 10.1146/annurev.fl.23.010191.003125
[5] DOI: 10.1146/annurev.fl.25.010193.002543
[6] DOI: 10.1017/S002211209100071X · Zbl 0729.76040
[7] DOI: 10.1063/1.1432695 · Zbl 1184.76437
[8] Batchelor, An Introduction to Fluid Dynamics. (1967) · Zbl 0152.44402
[9] DOI: 10.1017/S002211207500198X
[10] Batchelor, The Theory of Homogeneous Turbulence. (1953) · Zbl 0053.14404
[11] DOI: 10.1063/1.869966 · Zbl 1147.76463
[12] DOI: 10.1063/1.1762382
[13] Monin, Statistical Fluid Mechanics. (1977)
[14] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066
[15] DOI: 10.1017/S0022112086001180 · Zbl 0624.76130
[16] Alim, Algerian J. Appl. Fluid Mech. 1 pp 1– (2007)
[17] DOI: 10.1017/S0022112086000198 · Zbl 0639.76111
[18] DOI: 10.1017/S0022112088001442 · Zbl 0642.76070
[19] DOI: 10.1017/S0022112085003251 · Zbl 0616.76121
[20] DOI: 10.1146/annurev.fl.24.010192.001433
[21] DOI: 10.1063/1.869762 · Zbl 1185.76666
[22] DOI: 10.1063/1.868778 · Zbl 0844.76036
[23] Lumley, Atmospheric Turbulence and Radio Wave Propagation pp 166– (1967)
[24] Lighthill, Proc. R. Soc. Lond. 211 pp 564– (1952)
[25] DOI: 10.1017/S0022112065000010 · Zbl 0149.44401
[26] DOI: 10.1016/j.compfluid.2006.01.008 · Zbl 1177.76110
[27] DOI: 10.1098/rsta.2006.1944 · Zbl 1152.76407
[28] DOI: 10.1063/1.857354
[29] DOI: 10.1007/s10409-007-0107-0 · Zbl 1202.76036
[30] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007
[31] DOI: 10.1017/S0022112075002777 · Zbl 0325.76117
[32] DOI: 10.1017/S0022112002001659 · Zbl 1035.76052
[33] Hinze, Turbulence (1975)
[34] Wu, Vorticity and Vortex Dynamics. (2006)
[35] DOI: 10.1017/S0022112004007943 · Zbl 1116.76368
[36] DOI: 10.1017/S0022112004001958 · Zbl 1065.76106
[37] DOI: 10.1017/S0022112086002859 · Zbl 0622.76027
[38] Tsinober, Phys. Rev. Lett. 99 pp 321– (1983)
[39] DOI: 10.1016/S0997-7546(98)80003-4 · Zbl 0932.76029
[40] DOI: 10.1017/S0022112093002575 · Zbl 0800.76296
[41] DOI: 10.1063/1.857747 · Zbl 0699.76066
[42] DOI: 10.1063/1.866535
[43] Truesdell, The Kinematics of Vorticity. (1954) · Zbl 0056.18606
[44] DOI: 10.1017/S0022112005004726 · Zbl 1071.76015
[45] DOI: 10.2307/2372158 · Zbl 0042.06204
[46] DOI: 10.1016/j.fluiddyn.2004.12.004 · Zbl 1153.76367
[47] Taylor, Proc. R. Soc. Lond. 151 pp 421– (1935)
[48] DOI: 10.1007/s00348-006-0238-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.