×

The low Mach number limit for the full Navier-Stokes-Fourier system. (English) Zbl 1147.76049

Summary: We study the low Mach number asymptotic limit for solutions to the full Navier-Stokes–Stokes-Fourier system, supplemented with ill-prepared data and considered on an arbitrary time interval. Convergence towards incompressible Navier-Stokes equations is shown.

MSC:

76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q30 Navier-Stokes equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alazard, T.: Low mach number limit of the full Navier-Stokes equations. To appear in Arch. Ration. Mech. Anal. (2005)
[2] Boccardo L., Dall’Aglio A., Gallouet T., Orsina L. (1997). Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 · Zbl 0887.35082
[3] Bresch D., Desjardins B., Grenier E., Lin C.-K. (2002). Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case. Stud. Appl. Math. 109, 125–149 · Zbl 1114.76347
[4] Buet, C., Després, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. Preprint 2003
[5] Danchin R. (2002). Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219 · Zbl 1048.35075
[6] Desjardins B., Grenier E., Lions P.-L., Masmoudi N. (1999). Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 · Zbl 0992.35067
[7] DiPerna R.J., Lions P.-L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 · Zbl 0696.34049
[8] Ducomet B., Feireisl E. (2004). On the dynamics of gaseous stars. Arch. Ration. Mech. Anal. 174, 221–266 · Zbl 1085.76061
[9] Ebin D.B. (1977). The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. of Math. 105(2): 141–200 · Zbl 0373.76007
[10] Ebin, D.B.: Viscous fluids in a domain with frictionless boundary. Global Analysis - Analysis on Manifolds. (Ed. H. Kurke, J. Mecke, H. Triebel, R. Thiele) Teubner-Texte zur Mathematik 57, Teubner, Leipzig, 93–110 (1983)
[11] Feireisl E. (2003). Dynamics of viscous compressible fluids. Oxford University Press, Oxford · Zbl 1090.76061
[12] Feireisl, E.: Mathematical theory of compressible, viscous, and heat conducting fluids. To appear in Comput. Appl. Math. (2007) · Zbl 1122.76075
[13] Feireisl E., Novotný (2005). On a simple model of reacting compressible flows arising in astrophysics. Proc. Roy. Sect. Soc. Edinburgh Sect. A 135, 1169–1194 · Zbl 1130.35108
[14] Gallavotti G. (1999). Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg · Zbl 0932.82002
[15] Gallavotti G. (2002). Foundations of fluid dynamics. Springer-Verlag, New York · Zbl 0986.76001
[16] Hagstrom T., Lorenz J. (2002). On the stability of approximate solutions of hyperbolic-parabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51: 1339–1387 · Zbl 1039.35085
[17] Hoff D. (1998). The zero Mach number limit of compressible flows. Comm. Math. Phys. 192, 543–554 · Zbl 0907.35098
[18] Hoff D. (2002). Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Comm. Pure Appl. Math. 55, 1365–1407 · Zbl 1020.76046
[19] Klainerman S., Majda A. (1981). Compressible and incompressible fluids. Comm. Pure Appl. Math. 34, 481–524 · Zbl 0476.76068
[20] Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T. (2001). Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39, 261–343 · Zbl 1015.76071
[21] Lin C.K. (1995). On the incompressible limit of the compressible Navier–Stokes equations. Comm. Partial Differential Equations 20, 677–707 · Zbl 0816.35105
[22] Lions P.-L., Masmoudi N. (1998). Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 · Zbl 0909.35101
[23] Métivier G., Schochet S. (2001) The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 · Zbl 0974.76072
[24] Métivier G., Schochet S. (2003). Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183 · Zbl 1029.34035
[25] Müller, I., Ruggeri, T.: Rational extended thermodynamics. Springer Tracts in Natural Philosophy 37. Springer-Verlag, Heidelberg, 1998 · Zbl 0895.00005
[26] Oxenius J. (1986). Kinetic theory of particles and photons. Springer-Verlag, Berlin
[27] Rajagopal K.R., Shrinivasa A.R. (2004). On thermodynamical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 631–651 · Zbl 1041.74002
[28] Schochet S. (1986). The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49–75 · Zbl 0612.76082
[29] Schochet S. (1994). Fast singular limits of hyperbolic pde’s. J. Differential Equations 114, 476–512 · Zbl 0838.35071
[30] Schochet S. (2005). The mathematical theory of low Mach number flows. M2AN 39, 441–458 · Zbl 1094.35094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.