×

zbMATH — the first resource for mathematics

Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids. (English. Russian original) Zbl 1147.82029
Theor. Math. Phys. 154, No. 1, 75-84 (2008); translation from Teor. Mat. Fiz. 154, No. 1, 91-101 (2008).
Summary: We discuss the important role of the Zubarev nonequilibrium statistical operator method in the generalized molecular hydrodynamics of fluids. Using this method allows developing a consistent approach of generalized collective excitations for simple, ion, polar, magnetic, and some other fluids. We construct a nonequilibrium statistical operator and derive the corresponding transport equations for a system that relaxes and passes into the state of molecular hydrodynamics.

MSC:
82C70 Transport processes in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. P. Boon and S. Yip, Molecular Hydrodynamics, McGraw-Hill, New York (1980).
[2] R. D. Mountain, Adv. Mol. Relax. Proc., 9, 225 (1977). · doi:10.1016/0001-8716(77)80004-7
[3] S. W. Lovesey and T. Springer, Dynamics of Solids and Liquids by Neutron Scattering (Topics Current Phys., Vol. 3), Springer, Berlin (1977).
[4] P. Resibois and M. De Leneer, Classical Kinetic Theory of Fluids, Wiley, New York (1977).
[5] L. P. Kadanoff and P. C. Martin, Ann. Phys., 24, 419 (1963). · Zbl 0131.45002 · doi:10.1016/0003-4916(63)90078-2
[6] M. V. Sergeev, Theor. Math. Phys., 21, 1234 (1974). · Zbl 0312.76008 · doi:10.1007/BF01038102
[7] S. V. Tischenko, Theor. Math. Phys., 26, 62 (1976). · Zbl 0411.76006 · doi:10.1007/BF01038257
[8] I. M. de Schepper, E. G. D. Cohen, C. Bruin, J. C. van Rijs, W. Montrooij, and L. A. de Graaf, Phys. Rev. A, 38, 271 (1988). · doi:10.1103/PhysRevA.38.271
[9] Yu. A. Tserkovnikov, Theor. Math. Phys., 63, 619 (1985). · doi:10.1007/BF01017509
[10] I. M. Mryglod and M. V. Tokarchuk, ”On statistical hydrodynamics of simple fluids: Generalized transport coefficients [in Russian],” Preprint IFKS 91-6U, URSR Academy of Sciences, Kiev (1991). · Zbl 0967.76098
[11] I. M. Mryglod and M. V. Tokarchuk, Prob. Atomic Sci. Technol., No. 3(24), 134 (1992).
[12] I. M. Mryglod, I. P. Omelyan, and M. V. Tokarchuk, Mol. Phys., 84, 235 (1995). · doi:10.1080/00268979500100181
[13] D. N. Zubarev, Nonequilibruim Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York (1974).
[14] D. N. Zubarev, ”Modern methods of the statistical theory of nonequilibrium processes [in Russian],” in: Itogi Nauki i Tekhniki: Sovr. Prob. Mat., Vol. 15, VINITI, Moscow (1980), p. 131. · Zbl 0463.60089
[15] D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Relaxation and Hydrodynamic Processes, Akademie, Berlin (1997). · Zbl 0890.00009
[16] D. N. Zubarev and M. V. Tokarchuk, Theor. Math. Phys., 70, 164 (1987). · doi:10.1007/BF01039207
[17] A. Z. Akcasu and E. Deniels, Phys. Rev. A, 2, 962 (1970). · doi:10.1103/PhysRevA.2.962
[18] I. M. Mryglod, ”Statistical theory of collective excitations in fluids: Approach of collective generalized modes [in Ukrainian],” Author’s review of doctoral dissertation, Ivan Franko Lviv Natl. Univ., Lvov (2000).
[19] I. P. Omelyan and I. M. Mryglod, Cond. Matter Phys., No. 4, 128 (1994).
[20] I. M. Mryglod and I. P. Omelyan, Phys. Lett. A, 205, 401 (1995). · doi:10.1016/0375-9601(95)00577-P
[21] I. M. Mryglod, M. V. Tokarchuk, and R. Folk, Phys. A, 220, 325 (1995). · doi:10.1016/0378-4371(95)00232-V
[22] I. M. Mryglod and R. Folk, Phys. A, 234, 129 (1996). · doi:10.1016/S0378-4371(96)00285-3
[23] I. M. Mryglod and M. V. Tokarchuk, Theor. Math. Phys., 115, 479 (1998). · Zbl 0967.76098 · doi:10.1007/BF02575505
[24] I. M. Mryglod, Yu. K. Rudavskii, M. V. Tokarchuk, and O. F. Batsevych, Ukrainian J. Phys., 44, 1030 (1999).
[25] I. M. Mryglod, Yu. K. Rudavskii, M. V. Tokarchuk, and O. F. Batsevych, Ukrainian J. Phys., 44, 1174 (1999).
[26] I. Mryglod, R. Folk, S. Dubyk, and Yu. Rudavskii, Cond. Matter Phys., 2, No. 2(18), 221 (1999).
[27] I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, Cond. Matter Phys., 1, No. 1(13), 179 (1998).
[28] I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, Phys. Rev. E, 57, 6667 (1998). · doi:10.1103/PhysRevE.57.6667
[29] I. P. Omelyan, R. I. Gelem, and M. V. Tokarchuk, Ukrainian J. Phys., 42, 684 (1997).
[30] I. P. Omelyn, Mol. Phys., 93, No. 1, 123 (1998). · doi:10.1080/00268979809482196
[31] I. P. Omelyan and M. V. Tokarchuk, J. Phys. Cond. Matter, 12, L505 (2000). · doi:10.1088/0953-8984/12/30/104
[32] I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, Cond. Matter Phys., 8, No. 1(41), 25 (2005).
[33] T. Bryk and I. Mryglod, J. Phys. Cond. Matter, 16, L463 (2004). · doi:10.1088/0953-8984/16/41/L06
[34] T. Bryk and I. Mryglod, Cond. Matter Phys., 6, No. 3(35), 395 (2003).
[35] T. Bryk and I. Mryglod, Phys. Rev. B, 71, 132202 (2005). · doi:10.1103/PhysRevB.71.132202
[36] V. V. Ignatyuk, I. M. Mryglod, and M. V. Tokarchuk, Fiz. Nizk. Temp., 25, 407 (1999).
[37] V. V. Ignatyuk, I. M. Mryglod, and M. V. Tokarchuk, Fiz. Nizk. Temp., 25, 1145 (1999).
[38] I. M. Mryglod, Cond. Matter Phys., No. 10, 115 (1997).
[39] T. M. Bryk, I. M. Mryglod, and G. Kahl, Phys. Rev. E, 56, 2903 (1997). · doi:10.1103/PhysRevE.56.2903
[40] T. M. Bryk and I. M. Mryglod, Phys. Lett. A, 261, 349 (1999). · doi:10.1016/S0375-9601(99)00557-5
[41] T. M. Bryk and I. M. Mryglod, Cond. Matter Phys., 2, No. 2(18), 285 (1999).
[42] T. Bryk and I. Mryglod, Cond. Matter Phys., 7, No. 2(38), 285 (2004).
[43] T. Bryk and I. Mryglod, J. Phys. Cond. Matter, 13, 1343 (2001). · doi:10.1088/0953-8984/13/7/301
[44] T. Bryk and I. Mryglod, J. Phys. Studies, 8, No. 1, 35 (2004).
[45] T. Scopigno, U. Balucani, G. Ruocco, and F. Sette, Phys. Rev. E, 63, 011210 (2000).
[46] A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys. Cond. Matter, 19, 046209 (2007).
[47] D. N. Zubarev, V. G. Morozov, I. P. Omelyan, and M. V. Tokarchuk, Theor. Math. Phys., 87, 412 (1991). · Zbl 1189.82104 · doi:10.1007/BF01016582
[48] D. N. Zubarev, V. G. Morozov, I. P. Omelyan, and M. V. Tokarchuk, Theor. Math. Phys., 96, 997 (1993). · Zbl 0803.76001 · doi:10.1007/BF01019063
[49] M. V. Tokarchuk, I. P. Omelyan, and A. E. Kobryn, Cond. Matter Phys., 1, No. 4(16), 687 (1998).
[50] V. G. Morozov, A. E. Kobryn, and M. V. Tokarchuk, Cond. Matter Phys., No. 4, 117 (1994).
[51] I. P. Omelyan and M. V. Tokarchuk, Phys. A, 234, 89 (1996). · doi:10.1016/S0378-4371(96)00286-5
[52] A. E. Kobryn, I. P. Omelyan, and M. V. Tokarchuk, J. Stat. Phys., 92, 973 (1998). · Zbl 0963.82040 · doi:10.1023/A:1023044610690
[53] A. E. Kobryn, V. G. Morozov, I. P. Omelyan, and M. V. Tokarchuk, Phys. A, 230, 189 (1996). · doi:10.1016/0378-4371(96)00044-1
[54] P. A. Hlushak and M. V. Tokarchuk, Cond. Matter Phys., 7, No. 3(39), 639 (2004).
[55] I. M. Mryglod and V. V. Ignatyuk, J. Phys. Studies, 1, No. 2, 181 (1997).
[56] Yu. A. Tserkovnikov, Theor. Math. Phys., 85, 1096 (1990). · doi:10.1007/BF01017252
[57] Yu. A. Tserkovnikov, Theor. Math. Phys., 118, 85 (1999). · Zbl 0942.82026 · doi:10.1007/BF02557198
[58] Yu. A. Tserkovnikov, Theor. Math. Phys., 119, 511 (1999). · Zbl 0942.82028 · doi:10.1007/BF02557349
[59] I. M. Mryglod and A. M. Hachkevych, Cond. Matter Phys., No. 5, 105 (1995).
[60] G. O. Balabanyan, Theor. Math. Phys., 82, 317 (1990). · Zbl 0703.76063 · doi:10.1007/BF01029226
[61] G. O. Balabanyan, Theor. Math. Phys., 85, 1081 (1990). · Zbl 0729.76072 · doi:10.1007/BF01017250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.