×

The basic reproduction number in some discrete-time epidemic models. (English) Zbl 1147.92032

Summary: The next generation matrix approach for calculating the basic reproduction number \(\mathcal R_0\) is summarized for discrete-time epidemic models. This approach is applied to six disease models developed for the study of two emerging wildlife diseases: hantavirus in rodents and chytridiomycosis in amphibians. Two of the models include discrete spatial patches. For each model, \(\mathcal R_0\) is calculated in terms of the model parameters. For \(\mathcal R_0 <1\) , if a small number of infectives is introduced, then the wildlife disease dies out. Global stability of the disease-free equilibrium is verified for a special case of the SI hantavirus model when \(\mathcal R_0<1\) . In addition, a numerical example indicates that there is a transcritical bifurcation at \(\mathcal R_0 = 1\) , with the disease dying out if \(\mathcal R_0 < 1\) but tending to an endemic level if \(\mathcal R_0 > 1\) .

MSC:

92D30 Epidemiology
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevE.66.011912
[2] DOI: 10.1016/S0092-8240(03)00013-2 · Zbl 1334.92386
[3] Allen L.J.S., Contemporary Mathematics Series, 410, in Proceedings of the Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges pp 1– (2006)
[4] DOI: 10.1137/060672522 · Zbl 1121.92054
[5] DOI: 10.1080/10236190310001603662 · Zbl 1047.92049
[6] DOI: 10.1016/j.mbs.2003.08.002 · Zbl 1033.92029
[7] DOI: 10.1007/s11538-005-9034-4 · Zbl 1334.92387
[8] Allen L.J.S., Nat. Resour. Modeling 4 pp 197– (1990)
[9] Anderson R.M., Infectious Diseases of Humans Dynamics and Control (1991)
[10] Arino J., A survey. Fields Inst. Comm. 48 pp 1– (2006)
[11] DOI: 10.1073/pnas.95.15.9031
[12] DOI: 10.1016/S0006-3207(00)00132-4
[13] DOI: 10.1016/S0025-5564(01)00065-7 · Zbl 1005.92029
[14] Castillo-Chavez, C. and Yakubu, A.A. 2002. ”Intraspecific competition, dispersal, and disease dynamics in discrete-time patchy environments”. Edited by: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D. and Yakubu, A.A. 165–181. NY: Springer-Verlag. Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, 2nd ed · Zbl 1021.92031
[15] Caswell H., Matrix Population Models (2001)
[16] Chu Y.-K., Am. J. Trop. Med. Hyg. 69 pp 263– (2003)
[17] Cushing J.M., An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics (1998) · Zbl 0939.92026
[18] Cushing J.M., Nat. Resour. Model. 8 pp 297– (1994)
[19] DOI: 10.3201/eid0506.990601
[20] DOI: 10.1016/0025-5564(94)90006-X · Zbl 0791.92019
[21] DOI: 10.1007/BF00178324 · Zbl 0726.92018
[22] DOI: 10.1098/rspb.1998.0437
[23] Elaydi S., An Introduction to Difference Equations, 3. ed. (2005) · Zbl 1071.39001
[24] DOI: 10.1080/10236190410001654151 · Zbl 1067.92052
[25] DOI: 10.1111/j.1939-7445.2006.tb00178.x · Zbl 1157.92323
[26] Glass G.E., Am. J. Trop. Med. Hyg. 59 pp 699– (1998)
[27] DOI: 10.1137/S0036144500371907 · Zbl 0993.92033
[28] Kocic V.L., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications (1993) · Zbl 0787.39001
[29] DOI: 10.1007/s11538-005-9039-7 · Zbl 1334.92413
[30] DOI: 10.1046/j.1523-1739.1999.97185.x
[31] DOI: 10.1007/s002850100132 · Zbl 1015.91059
[32] DOI: 10.2307/3761366
[33] DOI: 10.1007/s11538-005-9047-7 · Zbl 1334.92419
[34] Mills J.N., Am. J. Trop. Med. Hyg. 56 pp 273– (1997)
[35] DOI: 10.1046/j.1365-2656.2003.00675.x
[36] DOI: 10.1017/S0950268806006595
[37] DOI: 10.3201/eid0302.970202
[38] DOI: 10.1126/science.1103538
[39] DOI: 10.1016/S0025-5564(02)00108-6 · Zbl 1015.92036
[40] Wesley C.L., Proceedings of the 11th International Conference on Difference Equations and Applications (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.