×

Effects of public health educational campaigns and the role of sex workers on the spread of HIV/AIDS among heterosexuals. (English) Zbl 1147.92317

Summary: A sex-structured model for heterosexual transmission of HIV/AIDS is presented in which the population is divided into three subgroups: susceptibles, infectives and AIDS cases. The subgroups are further divided into two classes, consisting of individuals involved in high-risk sexual activities and individuals involved in low-risk sexual activities. The model considers the movement of individuals from high to low sexual activity groups as a result of public health educational campaigns. Thus, in this case public health educational campaigns are resulting in the split of the population into risk groups.
The equilibrium and epidemic threshold, which is known as the basic reproductive number \(({\mathcal R}_0)\), are obtained, and stability (local and global) of the disease-free equilibrium is investigated. The model is extended to incorporate sex workers, and their role in the spread of HIV/AIDS in settings with heterosexual transmission is explored. Comprehensive analytic and numerical techniques are employed in assessing the possible community benefits of public health educational campaigns in controlling HIV/AIDS. From the study, we conclude that the presence of sex workers enlarges the epidemic threshold \({\mathcal R}_0\), thus fuels the epidemic among the heterosexuals, and that public health educational campaigns among the high-risk heterosexual population reduces \({\mathcal R}_0\), and thus can help to slow or eradicate the epidemic.

MSC:

92D30 Epidemiology
34K20 Stability theory of functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Infectious Diseases of Humans (1991), Oxford University Press: Oxford University Press Oxford, p. 17
[2] Anderson, R. M.; Gupta, S.; May, R. M., Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1, Nature, 350-356 (1991)
[3] Baggaley, R. F.; Garnett, G. P.; Ferguson, N. M., Modelling the impact of antiretroviral use in resource-poor settings, PLoS Med., 3, 4, e124 (2006)
[4] Blower, S. M.; Mclean, A. R., Prophylactic vaccines, risk behaviour change, and the probability of eradicating HIV in San Francisco, Science, 265, 1451-1454 (1994)
[5] Blower, S. M.; Gershengorn, H. B.; Grant, R. M., A tale of two futures: HIV and antiretroviral therapy in San Francisco, Science, 287, 650-654 (2000)
[6] Blower, S.; Aschenbach, A.; Gershengorn, H.; Kahn, J., Predicting the unpredictable: transmission of drug resistant HIV, Nat. Med., 7, 1016-1020 (2001)
[7] Blower, S. M.; Koelle, K.; Mills, J., Health policy modeling: epidemic control, HIV vaccines and risky behavior, (Kaplan; Brookmeyer, Quantitative Evaluation of HIV Prevention Programs (2002), Yale University Press: Yale University Press New Haven, CJ), 260-289
[8] Blower, S.; Moss, R. B.; Fernandez-Cruz, E., Calculating the potential epidemic-level impact of therapeutic vaccination on the San Francisco HIV epidemic, AIDSci., 3, 21 (2003)
[9] Blower, S.; Schwartz, E. J.; Mills, J., Forecasting the future of HIV epidemics: the impact of antiretroviral therapies and imperfect vaccines, AIDS Rev., 5, 113-125 (2003)
[10] Blower, S.; Bodine, E.; Kahn, J.; McFarland, W., The antiretroviral rollout and drug-resistant HIV in Africa: insights from empirical data and theoretical models, AIDS Rev., 19, 1, 1-14 (2005)
[11] Busenberg, S.; Cooke, K., Vertically transmitted diseases models and dynamics. Biomathematics, vol. 23 (1993), Springer: Springer Berlin · Zbl 0837.92021
[12] Caldwell, J. P.; Quiggin, P., The social context of AIDS in Sub-Saharan Africa, Popul. Dev. Rev., 185-234 (1989)
[13] Campbell, C., Selling sex in the time of AIDS: the psycho-social context of condom use by sex workers on a South African mine, Soc. Sci. Med., 479-494 (2000)
[14] Castillo-Chavez, C., Busenberg, S., 1991. On the solution of the two-sex mixing problem. In: Busenberg, S., Martelli, M., (Eds.), Differential Equations Models in Biology, Epidemiology and Ecology, Proceedings, Claremont 1990. Lecture Notes in Biomathematics, vol. 92. Springer, New York, pp. 80-98.; Castillo-Chavez, C., Busenberg, S., 1991. On the solution of the two-sex mixing problem. In: Busenberg, S., Martelli, M., (Eds.), Differential Equations Models in Biology, Epidemiology and Ecology, Proceedings, Claremont 1990. Lecture Notes in Biomathematics, vol. 92. Springer, New York, pp. 80-98. · Zbl 0753.92024
[15] Del Valle, S.; Evangelista, A. M.; Velasco, M. C.; Kribs-Zaleta, C. M.; Hsu Schmitz, S. F., Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 187, 111-133 (2004) · Zbl 1047.92042
[16] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.P., On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 365-382 (1990) · Zbl 0726.92018
[17] Doyle, M. T.; Greenhalgh, D., Asymmetry and multiple endemic equilibria in a model for HIV transmission in a heterosexual population, Math. Comput. Model., 29, 43-61 (1999) · Zbl 1027.68731
[18] Doyle, M. T.; Greenhalgh, D.; Blythe, S., Equilibrium analysis of a mathematical model for the spread of AIDS in a two sex population with mixing constraints, J. Biol. Syst., 6, 2, 159-185 (1998)
[19] Elbasha, E. H.; Gumel, A. B., Theoretical assessment of public health impact of imperfect prophylactic HIV vaccines with therapeutic benefits. Bull, Math. Biol., 68, 577-614 (2006) · Zbl 1334.91060
[20] Gray, R. H.; Xianbin, L.; Wawer, M. J.; Gange, S. J.; Serwadda; Sewankambo, N. K.; Moore, R.; Wabwire-Mangen, F.; Lutalo, T.; Quinn, T. C., Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission, Rakai, Uganda, AIDS, 17, 1941-1951 (2003)
[21] Griffiths, J.; Lowrie, D.; Williams, J., An age-structured model for the AIDS epidemic, Eur. J. Oper. Res., 1-14 (2000) · Zbl 0955.92032
[22] Griffiths, J.; England, T.; Williams, J., Analytic solutions to compartment models of the HIV/AIDS epidemic, IMA J. Math. Appl. Med. Biol., 295-310 (2000) · Zbl 0966.92021
[23] Gysels, M.; Pool, R.; Nnalusiba, B., Women who sell sex in a Ugandan trading town: life histories, survival strategies and risk, Soc. Sci. Med., 54, 179-192 (2002)
[24] Hall, J., Sex Workers Join Efforts to Contain Spread of AIDS (2003), Inter. Press News Service: Inter. Press News Service Rome, Italy
[25] Heesterbeek, J. A.P.; Metz, J. A.J., The saturating contact rate in marriage- and epidemic models, J. Math. Biol., 31, 529-539 (1993) · Zbl 0770.92021
[26] Hethcote, H. W., The mathematics of infectious disease, SIAM Rev., 42, 599 (2000) · Zbl 0993.92033
[27] Hethcote, H. W.; Van Ark, J. W., Modelling HIV transmission and AIDS in the United States. Lecture Notes in Biomathematics (1980), Springer: Springer Berlin, Heidelberg
[28] Hsieh, Y.-H.; Velasco-Hernandez, J. X., Community treatment of HIV-1: initial stage and asymptotic dynamics, Biosystems, 23, 75-81 (1995)
[29] Hsu Schmitz, S. F., Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 167, 1-18 (2000) · Zbl 0979.92023
[30] Hsu Schmitz, S. F., Effects of genetic heterogeneity on HIV transmission in homosexual populations, (Castillo-Chavez, C.; Blower, S.; van den Driessche, P.; Kirschner, D.; Yakubu, A.-A., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory (2002), Springer: Springer Berlin), 245-260 · Zbl 1023.92029
[31] Hyman, J. M.; Li, J.; Stanley, E. A., The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155, 77-109 (1999) · Zbl 0942.92030
[32] Kermack, W.O., McKendrick, A.G., 1927. Contributions to the mathematical theory of epidemics-I. In: Proceedings of the Royal Society 115A, pp. 700-721 (reprint in Bull. Math. Biol. 53(1/2), 33-55, 1991).; Kermack, W.O., McKendrick, A.G., 1927. Contributions to the mathematical theory of epidemics-I. In: Proceedings of the Royal Society 115A, pp. 700-721 (reprint in Bull. Math. Biol. 53(1/2), 33-55, 1991).
[33] Kribs-Zaleta, C. M., Structured models for heterosexual disease transmission, Math. Biosci., 160, 83 (1999) · Zbl 0980.92031
[34] Kribs-Zaleta, C. M., The effect of the HIV/AIDS epidemic on Africa’s truck drivers, Math. Biosci. Eng., 2, 4, 771-788 (2005) · Zbl 1097.92044
[35] Lansky, A.; Nakashima, A.; Jones, J., Risk behaviors related to heterosexual transmission from HIV-infected persons, Sex. Transm. Dis., 483-489 (2000)
[36] Matlin, S., Spence, N., 2000. The gender aspects of the HIV/AIDS pandemic, EGM / HIV-AIDS /2000/OP1.; Matlin, S., Spence, N., 2000. The gender aspects of the HIV/AIDS pandemic, EGM / HIV-AIDS /2000/OP1.
[37] Mclean, A. R.; Blower, S. M., Imperfect vaccines and herd immunity to HIV, Proc. R. Soc. London, 253, 9, 13 (1993)
[38] Mclean, A. R.; Blower, S. M., Modelling vaccination, Trends Microbiol., 3, 458-463 (1995)
[39] Mufune, P., 2004. Social scientific antecedents of HIV/AIDS policies in africa, \( \langle;\) www.codesria.org/Links/conferences/hiv_aids/mufune.pdf \(\rangle;\).; Mufune, P., 2004. Social scientific antecedents of HIV/AIDS policies in africa, \( \langle;\) www.codesria.org/Links/conferences/hiv_aids/mufune.pdf \(\rangle;\).
[40] Mukandavire, Z.; Garira, W., HIV/AIDS model for assessing the effects of prophylactic sterilizing vaccines, condoms and treatment with amelioration, J. Biol. Syst., 14, 3, 323-355 (2006) · Zbl 1116.92042
[41] Mukandavire, Z.; Garira, W., Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe, J. Math. Biol., 54, 669-699 (2007) · Zbl 1114.92060
[42] New Internationalist, 1994. The money market.; New Internationalist, 1994. The money market.
[43] O‘Brien, T.; Busch, M.; Donegan, E.; Ward, J.; Wong, L., Heterosexual transmission of human imunodeficiency virus type 1 from transfusion recipients to their sex partners, J. Acquir. Immune. Defic. Syndr., 7, 705-710 (1994)
[44] Roberts, C.; Dangerfield, B., A system dynamics modelling framework for understanding the epidemiology of HIV/AIDS, (Dangerfield, B.; Roberts, C., OR Work in HIV/AIDS -first edition (1990), ORS Publication Unit: ORS Publication Unit UK)
[45] Ross, R., The Prevention of Malaria (1911), John Murray: John Murray London
[46] Royce, R. A.; Sena, A.; Cates, W.; Cohen, M. S., Sexual transmission of HIV, N. Engl. J. Med., 336, 15, 1072-1078 (1997)
[47] Smith, R. J.; Blower, S. M., Could disease-modifying HIV vaccines cause population-level perversity?, Lancet Infect. Dis., 4, 636-639 (2004)
[48] UNAIDS, 2004. Report on the global AIDS epidemic, Geneva.; UNAIDS, 2004. Report on the global AIDS epidemic, Geneva.
[49] UNAIDS, 2006. Report on the global AIDS epidemic, Geneva.; UNAIDS, 2006. Report on the global AIDS epidemic, Geneva.
[50] UNAIDS/WHO, 2003. AIDS epidemic update, Geneva.; UNAIDS/WHO, 2003. AIDS epidemic update, Geneva.
[51] UNAIDS/WHO, 2005. AIDS epidemic update, Geneva.; UNAIDS/WHO, 2005. AIDS epidemic update, Geneva.
[52] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 29-48 (2002) · Zbl 1015.92036
[53] Velasco-Hernandez, J. X.; Hsieh, Y.-H., Modelling the effect of treatment and behavioral change in HIV transmission dynamics, J. Math. Biol., 34, 233-249 (1994) · Zbl 0792.92023
[54] WHO, 2005. Zimbabwe WHO estimates of people requiring treatment.; WHO, 2005. Zimbabwe WHO estimates of people requiring treatment.
[55] Zimbabwe Ministry of Health and Child Welfare, 2003. CDC Zimbabwe and UNAIDS, Zimbabwe national HIV and AIDS estimates.; Zimbabwe Ministry of Health and Child Welfare, 2003. CDC Zimbabwe and UNAIDS, Zimbabwe national HIV and AIDS estimates.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.