zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of two different chaotic systems with time varying unknown parameters. (English) Zbl 1147.93397
Summary: A nonlinear control method based on Lyapunov stability theorem is proposed to design an adaptive controller for synchronizing two different chaotic systems. It is assumed that the unknown parameters of the drive and the response chaotic systems are time varying. It is shown that the proposed scheme can identify the system parameters if the system parameters are time invariant and the richness conditions are satisfied. To demonstrate the effectiveness of the proposed technique it has been applied to Lorenz-Chen dynamic systems, as drive-response systems. Simulation results indicate that the proposed adaptive controller has a high performance in synchronizing two chaotic systems.

MSC:
93D21Adaptive or robust stabilization
34C15Nonlinear oscillations, coupled oscillators (ODE)
37D45Strange attractors, chaotic dynamics
93C40Adaptive control systems
93D05Lyapunov and other classical stabilities of control systems
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Chen G. Control and synchronization of chaos, a bibliography, Department of Electrical Engineering, University of Houston, TX, USA, 1997.
[2] Chen, G.; Dong, X.: On feedback control of chaotic continuous-time systems, IEEE trans circuits & systems 40, 591-601 (1993) · Zbl 0800.93758 · doi:10.1109/81.244908
[3] Carroll, T. L.; Pecora, L. M.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[4] Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits, IEEE trans circuits & systems 38, 453-456 (1991) · Zbl 1058.37538
[5] Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals, Phys rev A 44, 2374-2383 (1991)
[6] Kapitaniak, T.: Continuous control and synchronization in chaotic systems, Chaos solitons & fractals 6, No. 3, 237-244 (1995) · Zbl 0976.93504 · doi:10.1016/0960-0779(95)80030-K
[7] Kocarev, L.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U.: Experimental observation of antimonotonicity in Chua’s circuit, Int J bifurcation & chaos 3, No. 4, 1051-1055 (1993) · Zbl 0894.58061 · doi:10.1142/S0218127493000878
[8] Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications, Phys rev lett 71, 65-68 (1993)
[9] Kocarev L, Parlitz U. Generalized synchronization in chaotic systems. Phys Rev Lett. 1995 Proc. SPIE; 2612:57 -- 61.
[10] Peng, J. H.; Ding, E. J.; Ding, M.; Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal, Phys rev lett 76, 904-907 (1996)
[11] Feng, J.; Chen, S.; Wang, C.: Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification, Chaos solitons & fractals 26, 1163-1169 (2005) · Zbl 1122.93401
[12] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[13] Murali, K.; Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems, Phys lett A 241, 303-310 (1998) · Zbl 0933.94023 · doi:10.1016/S0375-9601(98)00159-5
[14] Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons & fractals 26, 959-964 (2005) · Zbl 1093.93537
[15] Bai, E.; Lonngrn, K. E.: Sequential synchronization of two Lorenz systems using active control, Chaos solitons & fractals 11, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[16] Park, J. H.: Synchronization of gnesio chaotic system via backstepping approach, Chaos solitons & fractals 27, 1369-1375 (2006) · Zbl 1091.93028 · doi:10.1016/j.chaos.2005.05.001
[17] Wang, C.; Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos solitons & fractals 12, 1199-1206 (2001) · Zbl 1015.37052
[18] Yassen, M. T.: Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys lett A 350, 36-43 (2006) · Zbl 1195.34092 · doi:10.1016/j.physleta.2005.09.076
[19] Chen, S.; Lu, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control, Phys lett A 299, 353-358 (2002) · Zbl 0996.93016 · doi:10.1016/S0375-9601(02)00724-7
[20] Park, J. H.: Chaos synchronization between two different chaotic dynamical systems, Chaos solitons & fractals 27, 549-554 (2006) · Zbl 1102.37304
[21] Yassen, M. T.: Chaos synchronization between two different chaotic systems using active control, Chaos solitons & fractals 23, 131-140 (2005) · Zbl 1091.93520
[22] Chen, H. K.: Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lu, Chaos solitons & fractals 25, 1049-1056 (2005) · Zbl 1198.34069 · doi:10.1016/j.chaos.2004.11.032
[23] Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control, Phys lett A 320, 271-275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[24] He, M. F.; Mu, Y. M.; Zhao, L. Z.: Synchronization on parametric adaptive control algorithm, Acta phys sin 49, 829-832 (2000)
[25] Vassiliadis, D.: Parametric adaptive control and parameter identification of low-dimensional chaotic systems, Physica D 71, 319-341 (1994) · Zbl 0825.93365 · doi:10.1016/0167-2789(94)90151-1
[26] Fotsin, H.; Bowong, S.: Adaptive control and synchronization of chaotic systems consisting of van der Pol oscillators coupled to linear oscillators, Chaos solitons & fractals 27, 822-835 (2006) · Zbl 1091.93015 · doi:10.1016/j.chaos.2005.04.055
[27] Zhang, H.; Huang, W.; Wang, Z.; Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters, Phys lett A 350, 363-366 (2006) · Zbl 1195.93121 · doi:10.1016/j.physleta.2005.10.033
[28] Kakmeni, F. M. M.; Bowong, S.; Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems, Phys lett A 355, 47-54 (2006) · Zbl 1130.93404
[29] Yan, Z.; Yu, P.: Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems, Chaos solitons & fractals 33, 419-435 (2007) · Zbl 1136.93430 · doi:10.1016/j.chaos.2005.12.059
[30] Kakmeni, F. M. M.; Bowong, S.; Tchawoua, C.: Reduced-order synchronization of uncertain chaotic systems via adaptive control, Commun nonlinear sci num simulation 11, 810-830 (2006) · Zbl 1130.93404 · doi:10.1016/j.cnsns.2004.12.007
[31] Lazzouni SA, Bowong S, Kakmeni FMM, Cherki B. An adaptive feedback control for chaos synchronization of nonlinear systems with different order. Commun Nonlinear Sci Num Simulation, in press. · Zbl 1234.70006
[32] Fotsin, H.; Bowong, S.; Daafouz, J.: Adaptive synchronization of two chaotic systems consisting of modified van der Pol -- Duffing and Chua oscillators, Chaos solitons & fractals 26, 215-229 (2005) · Zbl 1122.93069 · doi:10.1016/j.chaos.2004.12.029
[33] Luo, X. S.; Fang, J. Q.; Wang, L. H.: Output feedback synchronization of a chaotic arneodo system, Acta phys sin 48, 2196-2201 (1999)
[34] Dai, D.; Ma, X. -K.: Chaos synchronization by using intermittent parametric adaptive control method, Phys lett A 288, 23-28 (2001) · Zbl 0971.37043 · doi:10.1016/S0375-9601(01)00521-7
[35] Suykens, J.; Vandewalle, J.; Chua, L.: Nonlinear H$\infty $ synchronization of chaotic Lur’e systems, Int J bifurcation & chaos 7, No. 6, 1323-1325 (1997) · Zbl 0967.93508 · doi:10.1142/S0218127497001059
[36] Suykens, J.; Curran, P.; Chua, L.: Robust synthesis for master -- slave synchronization of Lur’e systems, IEEE trans circuits & systems I 46, 841-850 (1999) · Zbl 1055.93549 · doi:10.1109/81.774230
[37] Sun, J.; Zhang, Y.; Wang, L.; Wu, Q.: Impulsive robust control of uncertain luré systems, Phys lett A 304, 130-135 (2002) · Zbl 1001.93071 · doi:10.1016/S0375-9601(02)01384-1
[38] Sun, J.; Zhang, Y.; Qiao, F.; Wu, Q.: Some impulsive synchronization criterions for coupled chaotic systems via unidirectional linear error feedback approach, Chaos solitons & fractals 19, 1049-1055 (2004) · Zbl 1069.37029 · doi:10.1016/S0960-0779(03)00264-9
[39] Chen, C.; Feng, G.; Guan, X.: Robust synchronization of chaotic Lur’e systems via delayed feedback control, Phys lett A 321, 344-354 (2004) · Zbl 1118.81325 · doi:10.1016/j.physleta.2003.12.043
[40] Liao, T. L.; Huang, N. S.: Control and synchronization of discrete-time chaotic systems via variable structure control technique, Phys lett A 234, 262-268 (1997) · Zbl 1044.37556 · doi:10.1016/S0375-9601(97)00472-6
[41] Yau, H. T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos solitons & fractals 22, 341-347 (2004) · Zbl 1060.93536 · doi:10.1016/j.chaos.2004.02.004
[42] Solak, E.; Morgul, O.; Ersoy, U.: Observer-based control of a class of chaotic systems, Phys lett A 279, 47-55 (2001) · Zbl 0972.37020 · doi:10.1016/S0375-9601(00)00808-2
[43] Ramirez, J. A.; Puebla, H.; Cervantes, H.: Convergence rate of observer-based approach for chaotic synchronization, Phys lett A 289, 193-198 (2001) · Zbl 1025.37047 · doi:10.1016/S0375-9601(01)00608-9
[44] Skogestad, S.; Postlethwaite, I.: Multivariable feedback control analysis and design, (1996) · Zbl 0883.93001