zbMATH — the first resource for mathematics

Tautological cycles on Jacobian varieties. (English) Zbl 1148.14006
Let \(C\) be a nonsingular projective curve of genus \(g\) and let \(J(C)\) denote its Jacobian variety. Let \(A_\bullet(J(C))_\mathbb{Q}\) denote the group of rational algebraic cycles modulo algebraic equivalence, graded by dimension. The so-called tautological ring \({\mathcal R}(C)\) is defined to be the subgroup of \(A_\bullet(J(C))_\mathbb{Q}\) containing the class of \(C\) and stable under the Fourier transform, the intersection product, the Pontryagin product, pullbacks and pushforwards through multiplication maps by integers.
In this paper the author constructs a set of generators of \({\mathcal R}(C)\), which enables us to control all the possible structures of the tautological ring. Let \([A_d(J(C))_{\mathbb{Q}}]_x= \{W\in A_d(J(C))_{\mathbb{Q}}; m^* W= m^{2g-2d-s} W\) for any \(m\in\mathbb{Z}\}\). He takes the set of \(s\)-components \(C_{(s)}\in[A_1(J(C))_{\mathbb{Q}}]_s\) of the curve \(C\) as a starting point, and constructs inductively a certain cycle \(\lambda_{\{i_1,\dots, i_d\}}\in [A_d(J(C))_{\mathbb{Q}}]_{i_1+\cdots+ i_d}\) which is annihilated by the principal polarization divisor and is congruent to \(C_{(i_1)}*\cdots* C_{(i_d)}\) modulo the subspace spanned by elements of lower degree. As an application he gives an exhaustive description of \({\mathcal R}(C)\) for all the possibilities that may occur in the cases when \(g\leq 9\).

14C25 Algebraic cycles
14C15 (Equivariant) Chow groups and rings; motives
14H40 Jacobians, Prym varieties
14K12 Subvarieties of abelian varieties
Full Text: DOI EuDML arXiv
[1] E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris,Geometry of Algebraic Curves, I, Springer-Verlag, New York, 1985. · Zbl 0559.14017
[2] A. Beauville, Quelques remarques sur la tranformation de Fourier dans l’anneau de Chow d’une variété abélienne,Algebraic Geometry (Tokyo/Kyto, 1982), 238–260, Lecture Notes in Math.1016, Springer, Berlin, 1983.
[3] A. Beauville, Sur l’anneau de Chow d’une variété abélienne,Math. Ann. 273 (1986), 647–651. · Zbl 0576.14005
[4] A. Beauville, Algebraic cycles on Jacobian varieties,Compositio Math. 140 (2004), 683–688. · Zbl 1062.14011
[5] G. Ceresa,C is not algebraically equivalent toC in its Jacobian,Ann. of Math. (2)117 (1983), 285–291. · Zbl 0538.14024
[6] A. Collino, Poincaré’s formulas and hyperelliptic curves,Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 109 (1975), 89–101. · Zbl 0337.14024
[7] E. Colombo and B. van Geemen, Note on curves in a Jacobian,Compositio Math. 88 (1993), 333–353. · Zbl 0802.14002
[8] Ch. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform,J. Reine Angew. Math. 422 (1991), 201–219. · Zbl 0745.14003
[9] N. Fackhruddin, Algebraic cycles on generic abelian varieties,Compositio Math. 100 (1996), 101–119. · Zbl 0871.14005
[10] W. Fulton,Intersection Theory, Ergebnisse de Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1984. · Zbl 0541.14005
[11] M. Green, J. Murre, and C. Voisin,Algebraic Cycles and Hodge Theory, Lecture Notes in Mathematics1594, Springer-Verlag, Berlin, 1994.
[12] F. Herbaut,Algebraic cycles on the Jacobian of a curve with a g d r , arXiv:math AG/0606140. · Zbl 1187.14006
[13] A. Ikeda, Algebraic cycles and infinitesima invariants on Jacobian varieties,J. Algebraic Geom. 12 (2003), 573–603. · Zbl 1077.14508
[14] K. Künnemann, On the Chow motive of an abelian scheme,Motives (Seatle, WA, 1991), 189–205, Proc. Sympos. Pure Math.55, Amer. Math. Soc., Providence, RI, 1994.
[15] K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes,Invent. Math. 113 (1993), 85–102. · Zbl 0806.14001
[16] A. Kouvidakis and G. Van Der Geer,Cycles relations on Jacobian varieties, arXiv:math AG/0608606.
[17] G. Marini, Algebraic cycles on abelian varieties and their decomposition,Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat (8),7 (2004), 231–240. · Zbl 1112.14007
[18] S. Mukai, Duality betweenD(X) and $$D(\(\backslash\)hat X)$$ with its applications to Picard sheaves,Nagoya Math. J. 81 (1981), 153–175. · Zbl 0417.14036
[19] A. Polishchuk, Universal algebraic equivalences between tautological cycles on Jacobians of curves,Math. Z. 251 (2005), 875–897. · Zbl 1083.14030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.