×

Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces. (English) Zbl 1148.26010

The author considers the initial value problem for a nonlinear Volterra type integro-differential equation \[ x'(t)=f\left(t, x(t), \int\limits_0^t k(t, s, x(s)) ds \right), \] where \(f\), \(k\) and \(x\) are functions with values in a Banach space, and the integral is taken in the sense of HL [see S. S. Cao, Southeast Asian Bull. Math. 16, No. 1, 35–40 (1992; Zbl 0749.28007)]. In the first part of the paper some well-known definitions and results from the literature are presented and discussed, in particular, the Kuratowski and Hausdorff measures of noncompactness as well as Henstock-Kurzweil integral in Banach space. Using these notions and a fixed point theorem due to H. Mönch [Nonlinear Anal., Theory Methods Appl. 4, 985–999 (1980; Zbl 0462.34041)], the author proves local solvability of the above initial value problem, provided the functions \(f\) and \(k\) belong to the \(L^1\)-Carathéodory class, and satisfy some additional conditions expressed in terms of the measure of noncompactness.

MSC:

26A39 Denjoy and Perron integrals, other special integrals
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
26E20 Calculus of functions taking values in infinite-dimensional spaces
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] S. S. Cao, “The Henstock integral for Banach-valued functions,” Southeast Asian Bulletin of Mathematics, vol. 16, no. 1, pp. 35-40, 1992. · Zbl 0749.28007
[2] V. G. \vCelidze and A. G. D\vzvar\vsvili, Theory of the Denjoy Integral and Some of Its Applications, Tbilis. Gos. Univ., Tbilisi, Russia, 1978. · Zbl 0471.26005
[3] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, vol. 4 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 1994. · Zbl 0807.26004
[4] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, NY, USA, 1991. · Zbl 0745.26006
[5] P. Y. Lee, Lanzhou Lectures on Henstock Integration, vol. 2 of Real Analysis, World Scientific, Teaneck, NJ, USA, 1989. · Zbl 0699.26004
[6] T. S. Chew, “On Kurzweil generalized ordinary differential equations,” Journal of Differential Equations, vol. 76, no. 2, pp. 286-293, 1988. · Zbl 0666.34041 · doi:10.1016/0022-0396(88)90076-9
[7] T. S. Chew and F. Flordeliza, “On x\(^{\prime}\)=f(t,x) and Henstock-Kurzweil integrals,” Differential Integral Equations, vol. 4, no. 4, pp. 861-868, 1991. · Zbl 0733.34004
[8] I. Kubiaczyk and A. Sikorska-Nowak, “Differential equations in Banach space and Henstock-Kurzweil integrals,” Discussiones Mathematicae. Differential Inclusions, vol. 19, no. 1-2, pp. 35-43, 1999. · Zbl 0962.34043
[9] J. Kurzweil, “Generalized ordinary differential equations and continuous dependence on a parameter,” Czechoslovak Mathematical Journal, vol. 7, no. 82, pp. 418-449, 1957. · Zbl 0090.30002
[10] A. Sikorska-Nowak, “Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals,” Demonstratio Mathematica, vol. 35, no. 1, pp. 49-60, 2002. · Zbl 1011.34066
[11] R. P. Agarwal, M. Meehan, and D. O/Regan, “Positive solutions of singular integral equations-a survey,” Dynamic Systems and Applications, vol. 14, no. 1, pp. 1-37, 2005. · Zbl 1076.45001
[12] R. P. Agarwal, M. Meehan, and D. O/Regan, Nonlinear Integral Equations and Inclusions, Nova Science Publishers, New York, NY, USA, 2001.
[13] R. P. Agarwal and D. O/Regan, “Existence results for singular integral equations of fredholm type,” Applied Mathematics Letters, vol. 13, no. 2, pp. 27-34, 2000. · Zbl 0973.45002 · doi:10.1016/S0893-9659(99)00161-5
[14] S. Krzyśka, “On the existence of continuous solutions of Urysohn and Volterra integral equations in Banach spaces,” Demonstratio Mathematica, vol. 28, no. 2, pp. 353-360, 1995. · Zbl 0849.45007
[15] M. Meehan and D. O/Regan, “Existence theory for nonlinear Volterra integrodifferential and integral equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 31, no. 3-4, pp. 317-341, 1998. · Zbl 0891.45004 · doi:10.1016/S0362-546X(96)00313-6
[16] D. O/Regan, “Existence results for nonlinear integral equations,” Journal of Mathematical Analysis and Applications, vol. 192, no. 3, pp. 705-726, 1995. · Zbl 0851.45003 · doi:10.1006/jmaa.1995.1199
[17] D. O/Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, vol. 445 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1998. · Zbl 0905.45003
[18] H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 4, no. 5, pp. 985-999, 1980. · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[19] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980. · Zbl 0441.47056
[20] A. Ambrosetti, “Un teorema di esistenza per le equazioni differenziali negli spazi di Banach,” Rendiconti del Seminario Matematico della Università di Padova, vol. 39, pp. 349-361, 1967. · Zbl 0174.46001
[21] R. A. Gordon, “Riemann integration in Banach spaces,” The Rocky Mountain Journal of Mathematics, vol. 21, no. 3, pp. 923-949, 1991. · Zbl 0764.28008 · doi:10.1216/rmjm/1181072923
[22] G. Ye, P. Y. Lee, and C. Wu, “Convergence theorems of the Denjoy-Bochner, Denjoy-Pettis and Denjoy-Dunford integrals,” Southeast Asian Bulletin of Mathematics, vol. 23, no. 1, pp. 135-143, 1999. · Zbl 0940.28012
[23] A. P. Solodov, “On conditions for the differentiability almost everywhere of absolutely continuous Banach-valued functions,” Moscow University Mathematics Bulletin, vol. 54, no. 4, pp. 29-32, 1999. · Zbl 0961.26012
[24] R. H. Martin Jr., “Nonlinear Operators and Differential Equations in Banach Spaces,” Robert E. Krieger, Melbourne, Fla, USA, 1987. · Zbl 0649.47039
[25] A. Alexiewicz, Functional Analysis, PWN, Warsaw, Poland, 1969. · Zbl 0181.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.