zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of the endemic equilibrium of multigroup SIR epidemic models. (English) Zbl 1148.34039
This paper provides an analysis of the global dynamics of a class of multigroup SIR epidemic models, with varying group sizes, in terms of the so-called basic reproduction number $R_0$. The incidence susceptible-infectious between groups is formulated as bilinear, giving rise to a constant nonnegative contact matrix model, which is assumed to be irreducible. Some well-known results from the graph theory applied to the study of irreducible nonnegative matrices, allow to construct a suitable Lyapunov function. As a consequence, the following result is established: If $R_0 \leq 1$, then the disease-free equilibrium is globally asymptotically stable. If $R_0>1$, then there exists a unique endemic equilibrium which is globally asymptotically stable in the interior of the feasible region.

34D23Global stability of ODE