## Spherical basis functions and uniform distribution of points on spheres.(English)Zbl 1148.41028

Let $$L^{2}(S^{d})$$ be the real Hilbert space equipped with the inner product
$\langle f,g \rangle=\omega_{d} \int_{S^{d}} f(x)g(x) \,d\sigma(x),$ where $$d\sigma$$ is the rotational invariant probability measure on $$S^{d}$$, and $$\omega_{d}$$ is the volume of $$S^{d}$$. Denote by $$Y_{l,m}$$ the usual orthonormal basis of spherical harmonics. For each fixed $$l$$, the set $$\{ Y_{l,m}: m=1,\dots, q_{l}\}$$ spans the eigenspace of the Laplace-Beltrami operator on $$S^{d}$$ corresponding to the eigenvalue $$\lambda_{l}=l(l+d-1)$$. Here $$q_{l}$$ is the dimension of the eigenspace corresponding to $$\lambda_{l}$$ and is given by
$q_{l}= \frac{(2l+d-1)\Gamma(l+d-1)}{\Gamma(l+1)\Gamma(d)}, \quad l\geq 1.$
Let $$x,y\in S^{d}$$, and let $$x\cdot y$$ denote the usual dot product in $$\mathbb R^{d+1}$$.
Definition 2.1. Let $$k\geq 0$$. A continuous function $$\varphi:[-1,1]\to\mathbb R$$ is called a spherical basis function (SBF) of order $$k$$ on $$S^{d}$$, if its expansion in Legendre polynomials $$\varphi(x\cdot y)=\sum_{l=0}^{\infty} a_{l} \frac{q_{l}}{\omega_{d}}P_{l}^{(\nu)}(x\cdot y),$$ has coefficients $$a_{l}>0$$ for all $$l\geq k$$ and $$\sum a_{l}q_{l}<\infty$$. An SBF of order 0 will simply be called an SBF.
In this paper the authors characterize uniform distribution of points on spheres in terms of SBFs. The authors use the summation formula for spherical harmonics to write $$\varphi$$, an SBF of order $$k$$, in the following form:
$\varphi(x\cdot y)= \sum_{l=0}^{\infty}a_{l} \sum_{m=1}^{q_{l}}Y_{l,m}(x)Y_{l,m}(y)$
with $$a_{l}>0$$ for all $$l\geq k$$, and $$\sum a_{l}q_{l}<\infty.$$ The coefficients $$a_{l}$$ are determined by
$a_l=\omega_d^2 \int_{S^d} \int_{S^d} \varphi(x\cdot y) Y_{l,m}(x) Y_{l,m}(y)\,d\sigma(x)\,d\sigma(y),$
and $$a_{0}$$ will be denoted by $$A_\varphi$$.
Theorem 3.4. Let $$k\geq 0$$ and let $$\varphi$$ be an SBF of order $$k$$ on $$S^{d}$$. Let $$x_{1},\dots,x_{N}$$ be $$N$$ points on $$S^{d}$$. Then the following three statements are equivalent:
1.
The points $$x_{1},\dots,x_{N}$$ are uniformly distributed on $$S^{d}$$.
2.
The following equation
$\lim_{N\to \infty} \frac{1}{N}\sum_{j=1}^{N}Y_{l,m}(x_{j})=0\tag{3.1}$
holds true for each spherical harmonics $$Y_{l,m}$$ with $$1\leq l<k$$ and $$m=1,\dots, q_{l}$$, and the limit $$\lim_{N\to\infty}\frac{1}{N}\sum_{j=1}^{N}\varphi(x_{j}\cdot y)=A_{\varphi}$$ holds true uniformly in $$y\in S^{d}$$.
3.
Equation ({3.1}) holds true for each spherical harmonics $$Y_{l,m}$$ with $$1\leq l< k$$ and $$m=1,\dots, q_{l}$$, and the following limit holds true
$\lim_{N\to\infty}\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \varphi(x_{i}\cdot x_{j})=A_\varphi.$
Let $$\varphi$$ be an SBF of order $$k$$, $$k=0,1,$$ on $$S^{d}$$. For each natural number $$N$$, let $$\Omega_{N}=\{ x_{j}\}_{j=1}^{N}$$ denote a set on $$N$$ points on $$S^{d}$$. We define the (normalized) $$N$$ point discrete $$\varphi$$-energy, $$E_\varphi(\Omega_{N})$$, by $$E_\varphi(\Omega_{N})= \frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\varphi(x_{i}\cdot x_{j}).$$ The $$N$$ point discrete $$\varphi$$-energy is also realized as a function
$E_\varphi(\Omega_{N}): \underbrace{S^{d}\times\cdots\times S^{d}}_{N}\to\mathbb R.$
In this paper the authors prove that minimal energy points associated with an SBF are uniformly distributed on the spheres.
Theorem 4.3. Let $$\varphi$$ be an SBF of order $$k$$, $$k=0,1$$ on $$S^{d}$$, and let $$\Omega_{N}^{*}=\{x_{1}^{*},\dots, x_{N}^{*}\}$$ be a set of $$N$$ points on $$S^{d}$$ that minimizes the $$N$$ point discrete $$\varphi$$-energy, i.e., $$E_\varphi(\Omega_{N}^{*})= \min_{\Omega_{N}}E_\varphi(\Omega_{N}),$$ where the minimum is taken over the set of all possible $$\Omega_{N}$$. Then the points $$x_{1}^{*},\dots,x_{N}^{*}$$ are uniformly distributed on $$S^{d}$$.
Let $$\varphi$$ be a SBF of order $$k$$, $$k=0,1$$, on $$S^{d}$$ and let $$x_{1},\dots,x_{N}$$ be a collection of $$N$$ points that minimizes the $$N$$-point discrete $$\varphi$$-energy. The authors use Reproducing Kernel Hilbert Space (RKHS) theory to obtain the estimate of quantity
$\left|\frac{1}{N}\sum_{j=1}^{N}f(x_{j})- \int_{S^{d}} f(x)\,d\sigma(x)\right| .$
In the last part of the paper the authors estimate the separation of the minimal energy points.

### MSC:

 41A55 Approximate quadratures 11K38 Irregularities of distribution, discrepancy 11K41 Continuous, $$p$$-adic and abstract analogues 46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
Full Text:

### References:

 [1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (1974), Dover Publications: Dover Publications New York [2] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404 (1950) · Zbl 0037.20701 [3] Beck, J.; Chen, W., Irregularities of Distribution (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.10039 [4] Bourgain, J.; Lindenstrauss, J., Distribution of points on spheres and approximation by zonotopes, Israel J. Math., 64, 25-31 (1988) · Zbl 0667.52001 [5] Brauchart, J. S., Invariance principle for energy functionals on spheres, Monatsh. Math., 141, 101-117 (2004) · Zbl 1052.41007 [6] Brauchart, J. S.; Hesse, K., Numerical integration over spheres of arbitrary dimension, Constr. Approx., 25, 41-71 (2007) · Zbl 1106.41028 [7] zu Castell, W.; Filbir, F., Radial basis functions and corresponding zonal series expansions on the sphere, J. Approx. Theory, 134, 65-79 (2005) · Zbl 1063.42017 [8] Chen, D.; Menegatto, V. A.; Sun, X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc., 131, 2733-2740 (2003) · Zbl 1125.43300 [9] Cucker, F.; Smale, S., On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.), 39, 1-49 (2001) · Zbl 0983.68162 [10] Damelin, S. B.; Grabner, P. J., Energy functionals, numerical integration and asymptotic equidistribution on the sphere, J. Complexity, 19, 3, 231-246 (2003) · Zbl 1043.65049 [11] S.B. Damelin, J. Levesley, X. Sun, Energy estimates and the Weyl criterion on compact homogeneous manifolds, in: Algorithm for Approximation, Springer, 2007, pp. 359-367.; S.B. Damelin, J. Levesley, X. Sun, Energy estimates and the Weyl criterion on compact homogeneous manifolds, in: Algorithm for Approximation, Springer, 2007, pp. 359-367. · Zbl 1117.65044 [12] Dyn, N.; Narcowich, F.; Ward, J., Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx., 15, 175-208 (1999) · Zbl 0948.41015 [13] Feige, U.; Schechtman, G., On the optimality of the random hyperplane rounding technique for MAX CUT, Random Structures and Algorithms, 20, 403-440 (2002), (special issue: Probabilistic Methods in Combinatorial Optimization) · Zbl 1005.90052 [14] Guo, K.; Hu, S.; Sun, X., Conditionally positive definite functions and Laplace-Stieltjes integrals, J. Approx. Theory, 74, 249-265 (1993) · Zbl 0832.42005 [15] Hardin, D. P.; Saff, E. B., Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc., 51, 10, 1186-1194 (2004) · Zbl 1095.49031 [16] Hardin, D. P.; Saff, E. B., Minimal Riesz energy point configurations for rectifiable $$d$$-dimensional manifolds, Adv. Math., 193, 174-204 (2005) · Zbl 1192.49048 [17] D.P. Hardin, E.B. Saff, H. Stahl, The support of the logarithmic equilibrium measure on the sets of revolution, J. Math. Phys. 48 (2007) 022901 (14pp).; D.P. Hardin, E.B. Saff, H. Stahl, The support of the logarithmic equilibrium measure on the sets of revolution, J. Math. Phys. 48 (2007) 022901 (14pp). · Zbl 1121.82004 [18] Hesse, K., A lower bound for the worst-case cubature error on spheres of arbitrary dimension, Numer. Math., 103, 413-433 (2006) · Zbl 1089.41025 [19] Hesse, K.; Sloan, I. H., Optimal lower bounds for cubature error on the sphere $$S^2$$, J. Complexity, 21, 790-803 (2005) · Zbl 1099.41023 [20] Hesse, K.; Sloan, I. H., Worst-case errors in a Sobolev space setting for cubature over the sphere $$S^2$$, Bull. Austral. Math. Soc., 71, 81-105 (2005) · Zbl 1068.41049 [21] Hesse, K.; Sloan, I. H., Cubature over the sphere $$S^2$$ in Sobolev spaces of arbitrary order, J. Approx. Theory, 141, 118-133 (2006) · Zbl 1102.41027 [22] Kuijlaars, A. B.J.; Saff, E. B., Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc., 350, 523-538 (1998) · Zbl 0896.52019 [23] Kuipers, L.; Niederreiter, H., Uniform Distribution of Sequences (1974), Wiley: Wiley New York · Zbl 0281.10001 [24] P. Leopardi, A partition of the unit sphere into regions of equal area and small diameter, Electron. Trans. Numer. Anal., 2006, to appear.; P. Leopardi, A partition of the unit sphere into regions of equal area and small diameter, Electron. Trans. Numer. Anal., 2006, to appear. · Zbl 1160.51304 [25] Levesley, J.; Light, W.; Ragozin, D.; Sun, X., A simple approach to variational theory for interpolation on spheres, Internat. Theory Numer. Anal., 132 (1999), (Birkhauser, Basel, Switzerland) [26] Levesley, J.; Sun, X., Approximation in rough native space by shifts of smooth kernels on spheres, J. Approx. Theory, 133, 269-283 (2005) · Zbl 1082.41018 [27] H. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS, Regional Conference Series in Mathematics, No. 84, American Mathematical Society, Providence, Rhode Island, 1990.; H. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS, Regional Conference Series in Mathematics, No. 84, American Mathematical Society, Providence, Rhode Island, 1990. [28] M’´uller, C., Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (1966), Springer: Springer Berlin · Zbl 0138.05101 [29] Narcowich, F. J., Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Appl., 190, 165-193 (1995) · Zbl 0859.58032 [30] Narcowich, F. J.; Sun, X.; Ward, J. D., Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math., 27, 107-124 (2007) · Zbl 1119.41011 [31] F.J. Narcowich, X. Sun, J.D. Ward, H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math. (2007) 369-390.; F.J. Narcowich, X. Sun, J.D. Ward, H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math. (2007) 369-390. · Zbl 1348.41010 [32] Narcowich, F. J.; Ward, J. D., Norm of inverses and condition numbers of matrices associated with scattered data, J. Approx. Theory, 64, 69-94 (1991) · Zbl 0724.41004 [33] Narcowich, F. J.; Ward, J. D., Norm estimates for the inverses of a general classes of scattered-data radial function interpolation matrices, J. Approx. Theory, 69, 84-109 (1992) · Zbl 0756.41004 [34] Narcowich, F. J.; Ward, J. D., Scattered data interpolation on spheres: error estimates and locally supported basis functions, SIAM J. Math. Anal., 33, 1393-1410 (2002) · Zbl 1055.41007 [35] Narcowich, F. J.; Ward, J. D., Scattered-data interpolation on $$R^n$$: error estimates for radial basis and band-limited functions, SIAM J. Math. Anal., 36, 284-300 (2004) · Zbl 1081.41014 [36] F.J. Narcowich, J.D. Ward, H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered-data interpolation via radial basis functions, Constr. Approx. 24 (2006) 175-186.; F.J. Narcowich, J.D. Ward, H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered-data interpolation via radial basis functions, Constr. Approx. 24 (2006) 175-186. · Zbl 1120.41022 [37] Pinkus, A., Strictly Hermitian positive definite functions, J. Anal. Math., 94, 293-318 (2004) · Zbl 1074.43004 [38] Poggio, T., Networks for approximation and learning, Proc. IEEE, 78, 1481-1497 (1990) [39] Powell, M. J.D., The theory of radial basis functions in 1990, (Light, W., Wavelets, Subdivision, and Radial Basis Functions (1990), Oxford University Press: Oxford University Press Oxford) · Zbl 0787.65005 [40] Rakhmanov, E. A.; Saff, E. B.; Zhou, Y. M., Minimal discrete energy on the sphere, Math. Res. Lett., 1, 6, 647-662 (1994) · Zbl 0839.31011 [41] Rudin, W., Real and Complex Analysis (1987), McGraw-Hill Series in Higher Mathematics, McGraw-Hill Inc.: McGraw-Hill Series in Higher Mathematics, McGraw-Hill Inc. New York · Zbl 0925.00005 [42] Saff, E. B.; Kuijlaars, A. B.J., Distributing many points on a sphere, Math. Intelligencer, 19, 5-11 (1997) · Zbl 0901.11028 [43] Schaback, R.; Wendland, H., Inverse and saturation theorems for radial basis function interpolation, Math. Comp., 71, 669-681 (2001) · Zbl 0989.41002 [44] Schoenberg, I. J., On metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math., 37, 787-793 (1937) · Zbl 0017.36101 [45] Schoenberg, I. J., Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44, 522-536 (1938) · Zbl 0019.41502 [46] Schoenberg, I. J., Metric spaces and completely monotone functions, Ann. of Math., 39, 811-841 (1938) · Zbl 0019.41503 [47] Schoenberg, I. J., Positive definite functions on spheres, Duke Math. J., 9, 96-108 (1942) · Zbl 0063.06808 [48] Stolarsky, K. B., Sums of distances between points on a sphere II, Proc. Amer. Math. Soc., 41, 575-582 (1973) · Zbl 0274.52012 [49] Stolarsky, K. B., Spherical distribution of $$N$$ points with maximal distance sums are well spaced, Proc. Amer. Math. Soc., 48, 203-206 (1975) · Zbl 0295.52007 [50] Sun, X., Norm estimates for inverses of Euclidean distance matrices, J. Approx. Theory, 70, 339-347 (1992) · Zbl 0776.41003 [51] Sun, X., Conditionally positive definite functions and their applications to multivariate interpolations, J. Approx. Theory, 73, 159-180 (1993) · Zbl 0805.41017 [52] Wendland, H., Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1075.65021 [53] Xu, Y.; Cheney, E. W., Strictly positive definite functions on spheres, Proc. Amer. Math. Soc., 116, 977-981 (1992) · Zbl 0787.43005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.