zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uncertainty in time-frequency representations on finite Abelian groups and applications. (English) Zbl 1148.43006
An uncertainty principle is studied in the context of the short time Fourier transform on finite Abelian groups. A class of equal norm tight Gabor frames, that are maximally robust to erasures, is constructed. Applications to the theory of recovering and storing signals with sparse time-frequency representations are discussed.

MSC:
43A75Analysis on specific compact groups
42C99Non-trigonometric Fourier analysis
WorldCat.org
Full Text: DOI
References:
[1] Benedetto, J. J.: Harmonic analysis and applications. Stud. adv. Math. (1997) · Zbl 0891.42020
[2] Benedetto, J. J.; Fickus, M.: Finite normalized tight frames. Adv. comput. Math. 18, No. 2 -- 4, 357-385 (2003) · Zbl 1028.42022
[3] Christensen, O.: An introduction to frames and Riesz bases. (2003) · Zbl 1017.42022
[4] Casazza, P. G.; Kovačevič, J.: Equal-norm tight frames with erasures. Adv. comput. Math. 18, No. 2 -- 4, 387-430 (2003) · Zbl 1035.42029
[5] Candès, E. J.; Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. comput. Math. 6, No. 2, 227-254 (2006) · Zbl 1102.94020
[6] Candes, E. J.; Romberg, J.; Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE trans. Inform. theory 52, 489-509 (2006) · Zbl 1231.94017
[7] Donoho, D. L.: Compressed sensing. IEEE trans. Inform. theory 52, No. 4, 1289-1306 (2006) · Zbl 1288.94016
[8] Donoho, D.; Stark, P.: Uncertainty principles and signal recovery. SIAM J. Appl. math. 49, 906-931 (1989) · Zbl 0689.42001
[9] Evans, R. J.; Isaacs, I. M.: Generalized Vandermonde determinants and roots of unity of prime order. Proc. amer. Math. soc. 58, 51-54 (1976) · Zbl 0337.12006
[10] Feichtinger, H. G.; Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. Appl. numer. Harmon. anal., 233-266 (1998) · Zbl 0890.42012
[11] H.G. Feichtinger, W. Kozek, F. Luef, Gabor analysis over finite Abelian groups, preprint, 2007 · Zbl 1162.43002
[12] H.G. Feichtinger, N. Kaiblinger, F. Luef, E. Matusiak, personal communication, 2005
[13] P.E. Frenkel, Simple proof of Chebotarev’s theorem on roots of unity, preprint, math.AC/0312398, 2004
[14] Folland, G. B.; Sitaram, A.: The uncertainty principle: A mathematical survey. J. Fourier anal. Appl. 3, No. 3, 207-238 (1997) · Zbl 0885.42006
[15] Goyal, V. K.; Kovačevič, J.: Quantized frame expansions with erasures. Appl. comput. Harmon. anal. 10, 203-233 (2001) · Zbl 0992.94009
[16] Gröchenig, K.: Foundations of time -- frequency analysis. Appl. numer. Harmon. anal. (2001) · Zbl 0966.42020
[17] Gröchenig, K.: Uncertainty principles for time -- frequency representations. Appl. numer. Harmon. anal., 11-30 (2003) · Zbl 1039.42004
[18] K. Gröchenig, Personal communication, 2006
[19] Hogan, J. A.; Lakey, J. D.: Time -- frequency and time -- scale methods: adaptive decompositions, uncertainty principles, and sampling. Appl. numer. Harmon. anal. (2005) · Zbl 1079.42027
[20] Kaniuth, E.: Minimizing functions for an uncertainty principle on locally compact groups of bounded representation dimension. Proc. amer. Math. soc. 135, No. 1, 217-227 (2007) · Zbl 1115.43002
[21] Károlyi, Gy.: Cauchy -- davenport theorem in group extensions. Enseign. math. 5, 239-254 (2005) · Zbl 1111.20026
[22] Katznelson, Y.: An introduction to harmonic analysis. (1976) · Zbl 0352.43001
[23] Kovacecic, J.; Cherbira, A.: Life beyond bases: the advent of the frames (Part II). IEEE signal process. Mag. 24, No. 5, 115-125 (2007)
[24] F. Krahmer, G. Pfander, P. Rashkov, Support size conditions for time -- frequency representations on finite Abelian groups, technical report, Jacobs University, Bremen, 2007
[25] Kutyniok, G.: A weak qualitative uncertainty principle for compact groups. Illinois J. Math. 47, No. 3, 709-724 (2003) · Zbl 1031.43003
[26] F. Luef, E. Matusiak, A general additive uncertainty principle for finite Abelian groups, preprint, 2005
[27] Lawrence, J.; Pfander, G. E.; Walnut, D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier anal. Appl. 11, 715-726 (2005) · Zbl 1099.42027
[28] Meshulam, R.: An uncertainty inequality for groups of order pq. European J. Combin. 13, No. 5, 401-407 (1992) · Zbl 0790.43007
[29] Meshulam, R.: An uncertainty inequality for finite abelian groups. European J. Combin. 27, 227-254 (2006) · Zbl 1145.43005
[30] Matusiak, E.; Özaydin, M.; Przebinda, T.: The donoho -- Stark uncertainty principle for a finite abelian group. Acta math. Univ. comenian. (N.S.) 73, No. 2, 155-160 (2004) · Zbl 1100.43003
[31] Puschel, M.; Kovačevič, J.: Real, tight frames with maximal robustness to erasures. DCC’05: Proceedings of the data compression conference, 63-72 (2005)
[32] G.E. Pfander, H. Rauhut, J. Tanner, Identification of matrices having a sparse representation, preprint, 2007
[33] Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. comput. Harmon. anal. 22, No. 1, 16-42 (2007) · Zbl 1123.94004
[34] Strohmer, T.; Jr., R. W. Heath: Grassmanian frames with applications to coding and communications. Appl. comput. Harmon. anal. 14, No. 3, 257-275 (2003)
[35] Stevenhagen, P.; Jr., H. W. Lenstra: Chebotarëv and his density theorem. Math. intelligencer 18, No. 2, 26-37 (1996) · Zbl 0885.11005
[36] Smith, K. T.: The uncertainty principle on groups. SIAM J. Appl. math. 50, No. 3, 876-882 (1990) · Zbl 0699.43006
[37] Tao, T.: An uncertainty principle for cyclic groups of prime order. Math. res. Lett. 12, 121-127 (2005) · Zbl 1080.42002
[38] Terras, A.: Fourier analysis on finite groups and applications. London math. Soc. stud. Texts 43 (1999) · Zbl 0928.43001