×

zbMATH — the first resource for mathematics

A matrix Hilbert transform in Hermitean Clifford analysis. (English) Zbl 1148.44004
The authors introduce a new Hermitean Hilbert transform, arising as part of the non-tangential boundary limits of that Hermitean Cauchy integral. The resulting matrix operator is shown to satisfy property adapted analogues of the characteristic properties of the Hilbert transform in classical analysis and orthogonal clifford analysis.

MSC:
44A15 Special integral transforms (Legendre, Hilbert, etc.)
30G30 Other generalizations of analytic functions (including abstract-valued functions)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abreu Blaya, R.; Bory Reyes, J.; Peña Peña, D.; Sommen, F., A boundary value problem for Hermitian monogenic functions, Bound. value probl., 2008, (2008), Article ID 385874 · Zbl 1154.30036
[2] Brackx, F.; Bureš, J.; De Schepper, H.; Eelbode, D.; Sommen, F.; Souček, V., Fundaments of Hermitean Clifford analysis. part I: complex structure, Complex anal. operator theory, 1, 23-47, (2007) · Zbl 1144.30019
[3] Brackx, F.; Bureš, J.; De Schepper, H.; Eelbode, D.; Sommen, F.; Souček, V., Fundaments of Hermitean Clifford analysis. part II: splitting of h-monogenic equations, Complex var. elliptic equ., 52, 10-11, 1063-1079, (2007) · Zbl 1144.30019
[4] Brackx, F.; De Knock, B.; De Schepper, H.; De Schepper, N., A new Hilbert transform in Hermitean Clifford analysis, (), 109-126 · Zbl 1158.30034
[5] Brackx, F.; De Knock, B.; De Schepper, H.; Eelbode, D., On the interplay between the Hilbert transform and conjugate harmonic functions, Math. methods appl. sci., 29, 12, 1435-1450, (2006) · Zbl 1114.46029
[6] F. Brackx, B. De Knock, H. De Schepper, D. Peña Peña, F. Sommen, The Cauchy integral in Hermitean Clifford analysis, submitted for publication · Zbl 1182.30081
[7] Brackx, F.; Delanghe, R.; Sommen, F., Clifford analysis, Res. notes math., vol. 76, (1982), Pitman Advanced Publishing Program Boston-London-Melbourne · Zbl 0529.30001
[8] Brackx, F.; De Schepper, H.; De Schepper, N.; Sommen, F., Hermitean clifford – hermite wavelets: an alternative approach, Bull. belg. math. soc. Simon stevin, 15, 1, 87-107, (2008) · Zbl 1132.42316
[9] F. Brackx, H. De Schepper, F. Sommen, The Hermitean Clifford analysis toolbox, in: Proceedings of ICCA7, in press · Zbl 1177.30064
[10] Delanghe, R., On some properties of the Hilbert transform in Euclidean space, Bull. belg. math. soc. Simon stevin, 11, 163-180, (2004) · Zbl 1073.30037
[11] Delanghe, R.; Sommen, F.; Souček, V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its applications, vol. 53, (1992), Kluwer Academic Publishers Dordrecht · Zbl 0747.53001
[12] Gilbert, J.E.; Murray, M.A.M., Clifford algebra and Dirac operators in harmonic analysis, Cambridge stud. adv. math., vol. 26, (1991), Cambridge University Press Cambridge
[13] Horváth, J., Sur LES fonctions conjuguées à plusieurs variables, Indag. math., 15, 17-29, (1953), (in French) · Zbl 0050.10501
[14] Rocha-Chavez, R.; Shapiro, M.; Sommen, F., Integral theorems for functions and differential forms in \(\mathbb{C}_m\), Res. notes math., vol. 428, (2002), Chapman & Hall/CRC New York
[15] Ryan, J., Complexified Clifford analysis, Complex var. theory appl., 1, 1, 119-149, (1982/1983) · Zbl 0503.30039
[16] Sabadini, I.; Sommen, F., Hermitian Clifford analysis and resolutions, Math. methods appl. sci., 25, 16-18, 1395-1413, (2002) · Zbl 1013.30033
[17] Sommen, F.; Peña Peña, D., A martinelli – bochner formula for the Hermitian Dirac equation, Math. methods appl. sci., 30, 9, 1049-1055, (2007) · Zbl 1117.30040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.