×

Sums of Toeplitz products with harmonic symbols. (English) Zbl 1148.47024

The authors study special combinations of Toeplitz operators with bounded harmonic symbols acting on the Bergman space over the unit disk. Let \(h^{\infty}\) be the set of all bounded harmonic functions on the unit disk. The main result of the paper gives criteria for being of finite rank or compact for an operator of the form \[ T=T_{\lambda}+\sum_{j=1}^{N}T_{u_j}T_{v_j}, \] where \(\lambda\) is a finite sum of finite products of functions from \(h^{\infty}\) and \(u_j,\, v_j \in h^{\infty}\) for each \(j\). Some interesting special forms and examples of the operator \(T\) are considered as well.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
32A36 Bergman spaces of functions in several complex variables
PDF BibTeX XML Cite
Full Text: DOI Euclid EuDML

References:

[1] Ahern, P.: On the range of the Berezin transform. J. Funct. Anal. 215 (2004), no. 1, 206-216. · Zbl 1088.47014
[2] Ahern, P. and Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J. Funct. Anal. 187 (2001), no. 1, 200-210. · Zbl 0996.47037
[3] Ahern, P. and Rudin, W.: \(\mathcal M\)-harmonic products. Indag. Math. (N.S.) 2 (1991), no. 2, 141-147. · Zbl 0762.32001
[4] Axler, S. and Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols. Integral Equations Operator Theory 14 (1991), no. 1, 1-11. · Zbl 0733.47027
[5] Axler, S. and Zheng, D.: Compact operators via the Berezin transform. Indiana Univ. Math. J. 47 (1998), no. 2, 387-400. · Zbl 0914.47029
[6] Choe, B. R., Koo, H. and Lee, Y. J.: Commuting Toeplitz operators on the polydisk. Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749. · Zbl 1060.47034
[7] Choe, B. R. and Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J. Math. 37 (1993), no. 3, 424-436. · Zbl 0816.47024
[8] Choe, B. R. and Lee, Y. J.: Pluriharmonic symbols of essentially commuting Toeplitz operators. Illinois J. Math. 42 (1998), no. 2, 280-293. · Zbl 0910.47018
[9] Choe, B., Lee, Y. J., Nam, K. and Zheng, D.: Products of Bergman space Toeplitz operators on the polydisk. Math. Ann. 337 (2007), no. 2, 295-316. · Zbl 1122.47022
[10] Coburn, L.: A Lipschitz estimate for Berezin’s operator calculus. Proc. Amer. Math. Soc. 133 (2005), no. 1, 127-131. · Zbl 1093.47024
[11] Guo, K., Sun, S. and Zheng, D.: Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols. Illinois J. Math. 51 (2007), no. 2, 583-596. · Zbl 1131.47023
[12] Hedenmalm, H., Korenblum, B. and Zhu, K.: Theory of Bergman space . Graduate Text in Math. 199 . Springer-Verlag, New York, 2000. · Zbl 0955.32003
[13] Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. of Math. (2) 86 (1967), 74-111. JSTOR: · Zbl 0192.48302
[14] Rudin, W.: Function theory in the unit ball of \(\mathbbC^n\). Grundlehren der Mathematischen Wissenschaften 241 . Springer-Verlag, New York-Berlin, 1980. · Zbl 0495.32001
[15] Stroethoff, K.: Essentially commuting Toeplitz operators with harmonic symbols. Can. J. Math. 45 (1993), no. 5, 1080-1093. · Zbl 0803.47029
[16] Zheng, D.: Hankel operators and Toeplitz operators on the Bergman space. J. Funct. Anal. 83 (1989), no. 1, 98-120. · Zbl 0678.47026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.