zbMATH — the first resource for mathematics

Continuum limits of discrete thin films with superlinear growth densities. (English) Zbl 1148.49010
Summary: We provide a rigorous derivation by \(\Gamma \)-convergence of an effective theory of thin films in hyperelastic regime in the so-called discrete to continuous framework. By considering a discrete thin film obtained piling up at microscopic distance a finite number \(M\) of copies of a discrete monolayer \(\omega\), we provide a continuum description analogous to that in the dimension-reduction theories for continuum thin films. Our energetic description of the continuum limit model accounts for microscopic effects and in particular depends in a non-trivial way on \(M\). We also consider the problem of homogenization and discuss several cases of interest when an explicit formula for the homogenized energy density can be obtained, with an interpretation in terms of the Cauchy-Born rule.

49J45 Methods involving semicontinuity and convergence; relaxation
74K35 Thin films
74B20 Nonlinear elasticity
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
Full Text: DOI
[1] Alicandro, R., Cicalese, M.: Representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37 (2004) · Zbl 1070.49009 · doi:10.1137/S0036141003426471
[2] Alicandro, R., Focardi, M., Gelli, M.S.: Finite difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa. Sc. Fis. E Mat. 29, 671–709 (2000) · Zbl 1072.49020
[3] Blanc, X., Le Bris, C.: Thomas-Fermi type models for polymer and thin films. Adv. Diff. Eq. 5, 977–1032 (2000) · Zbl 1223.35263
[4] Braides, A.: Non local variational limits of discrete systems. Comm. Contemporary Math. 2, 285–297 (2000) · Zbl 0957.49011
[5] Braides, A.: \(\Gamma\)-convergence for Beginners. Oxford University Press, Oxford (2002) · Zbl 1198.49001
[6] Braides, A., Cicalese, M.: Surface energies in nonconvex discrete systems. Math. Models Meth. Appl. Sci. 17, 985–1037 (2007) · Zbl 1205.82036 · doi:10.1142/S0218202507002182
[7] Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58 (1999) · Zbl 0945.74006 · doi:10.1007/s002050050135
[8] Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998) · Zbl 0911.49010
[9] Braides, A., Fonseca, I., Francfort, G.: 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49, 1367–1404 (2000) · Zbl 0987.35020 · doi:10.1512/iumj.2000.49.1822
[10] Braides, A., Francfort, G.: Bounds on the effective behaviour of a square conducting lattice. Proc. R. Soc. London A. 460, 1755–1769 (2004) · Zbl 1070.74040 · doi:10.1098/rspa.2003.1229
[11] Braides, A., Gelli, M.S.: Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 6, 395–414 (2002) · Zbl 1024.74004
[12] Braides, A., Gelli, M.S.: Limits of discrete systems with long range interactions. J. Convex Anal. 9, 363–399 (2002) · Zbl 1031.49022
[13] Braides, A., Gelli, M.S.: From discrete systems to continuum variational problems: an introduction. In: Topics on Concentration Phenomena and Problems with Multiple Scales, pp. 3–77, Lect. Notes Unione Mat. Ital. vol. 2. Springer, Berlin (2006) · Zbl 1131.49008
[14] Braides, A., Gelli, M.S., Sigalotti, M.: The passage from non-convex discrete systems to variational problem in Sobolev spaces: the one-dimensional case. Proc. Steklov Inst. 236, 395–414 (2002) · Zbl 1023.49009
[15] Braides, A., Lew, A.J., Ortiz, M.: Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180, 151–182 (2006) · Zbl 1093.74013 · doi:10.1007/s00205-005-0399-9
[16] Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47, 531–576 (1999) · Zbl 0960.74046 · doi:10.1016/S0022-5096(98)00043-X
[17] Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman, London (1989) · Zbl 0669.49005
[18] Chambolle, A.: Finite differences discretizations of the Mumford-Shah functional. RAIRO-Model. Math. Anal. Numer. 33, 261–288 (1999) · Zbl 0947.65076 · doi:10.1051/m2an:1999115
[19] Charlotte, M., Truskinovsky, L.: Linear elastic chain with hyper-pre-stress. J. Mech. Phys. Solids 50, 217–251 (2002) · Zbl 1035.74005 · doi:10.1016/S0022-5096(01)00054-0
[20] Dal Maso, G.: An Introduction to \(\Gamma\)-convergence. Birkhäuser, Boston (1993) · Zbl 0816.49001
[21] Friesecke, G., James, R.D.: A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540 (2000) · Zbl 0984.74009 · doi:10.1016/S0022-5096(99)00091-5
[22] Friesecke, G., Theil, F.: Validity and failure of the Cauchy–Born Hypothesis in a 2D mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002) · Zbl 1084.74501 · doi:10.1007/s00332-002-0495-z
[23] James, R.D.: Objective structures. J. Mech. Phys. Solids 54, 2354–2390 (2006) · Zbl 1120.74312 · doi:10.1016/j.jmps.2006.05.008
[24] Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995) · Zbl 0847.73025
[25] Pagano, S., Paroni, R.: A simple model for phase transitions: from discrete to continuum problem. Quart. Appl. Math. 61, 89–109 (2003) · Zbl 1068.74050
[26] Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal., to appear · Zbl 1156.74028
[27] Truskinovsky, L. : Fracture as phase transition. In: Batra, R.C., Beatty, M.F.(eds) Contemporary Reserch in the Mechanics and Mathematics of Materials, pp. 322–332. CIMNE, Barcelona (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.