×

zbMATH — the first resource for mathematics

Crystalline mean curvature flow of convex sets. (English) Zbl 1148.53049
Summary: We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in \(\mathbb R^n\). This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, satisfying a comparison principle, and defining a continuous semigroup in time. We prove that, when the initial set is convex, our evolution coincides with the flat \(\phi\)-curvature flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that the flat \(\phi\)-curvature flow starting from a compact convex set is unique.

MSC:
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, No article title, J. Differential Geom., 42, 1, (1995) · Zbl 0867.58020
[2] Almgren, No article title, SIAM J. Control Optim., 31, 387, (1993) · Zbl 0783.35002
[3] Altschuler, No article title, J. Geom. Anal., 5, 293, (1995) · Zbl 0847.58072
[4] Alvarez, No article title, J. Math. Pures Appl., 76, 265, (1997) · Zbl 0890.49013
[5] Amar, No article title, Ann. Inst. Henri Poincaré, 11, 91, (1994) · Zbl 0842.49016
[6] Amborsio, L.: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore di Pisa, 1997
[7] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000 · Zbl 0957.49001
[8] Angenent, No article title, Comm. Partial Differential Equations., 20, 1937, (1995)
[9] Anzellotti, No article title, Ann. Mat. Pura Appl., 135, 293, (1983) · Zbl 0572.46023
[10] Bellettini, No article title, J. Differential Equations., 184, 475, (2002) · Zbl 1036.35099
[11] Bellettini, No article title, First variation and global L∞ regularity. Arch. Ration. Mech. Anal., 157, 165, (2001) · Zbl 0976.58016
[12] Bellettini, No article title, Interfaces Free Bound., 1, 39, (1999) · Zbl 0934.49023
[13] Bellettini, No article title, Interfaces Free Bound., 3, 415, (2001) · Zbl 0989.35127
[14] Bellettini, No article title, Math. Mod. Meth. Appl. Sc., 10, 1, (2000)
[15] Bence, J., Merriman, B., Osher, S.: Diffusion Generated Motion by Mean Curvature. In: AMS Selected Lectures in Math., The Comput. Crystal Grower’s Workshop, edited by J. Taylor. Am. Math Soc., Providence, RI, 1993, p. 73
[16] Brezis, H.: Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North Holland, 1973 · Zbl 0252.47055
[17] Cahn, No article title, Acta Metall. Mater., 40, 1443, (1992)
[18] Cahn, J.W., Hoffman, D.W.: A vector thermodynamics for anisotropic interfaces. 1. Fundamentals and applications to plane surface junctions. Surface Sci.31, 368-388 (1972)
[19] Caselles, V., Chambolle, A.: Anisotropic curvature-driven flow of convex sets. Preprint R.I. 528, April 2004, Ecole Polytechnique, Centre de Mathématiques Appliqués. · Zbl 1107.35069
[20] Chambolle, No article title, Interfaces Free Bound., 6, 195, (2004) · Zbl 1061.35147
[21] Delfour, No article title, J. Funct. Anal., 123, 129, (1994) · Zbl 0814.49032
[22] Delfour, M.C., Zolesio, J.P.: Shapes and Geometries. Analysis, differential calculus, and optimization. Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2001 · Zbl 1002.49029
[23] Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. of Math. (2), 130, 453-471 (1989) · Zbl 0696.53036
[24] Evans, No article title, Indiana Univ. Math. J., 42, 533, (1993) · Zbl 0802.65098
[25] Evans, No article title, I. J. Differential Geom., 33, 635, (1991) · Zbl 0726.53029
[26] Evans, No article title, II. Trans. Amer. Math. Soc., 330, 321, (1992)
[27] Evans, No article title, III. J. Geom. Anal., 3, 121, (1992) · Zbl 0768.53003
[28] Gage, No article title, J. Differential Geom., 23, 69, (1986) · Zbl 0621.53001
[29] Giga, Y.: Singular diffusivity-facets, shocks and more. Hokkaido University Preprint Series in Mathematics, Series 604, September 2003
[30] Giga, No article title, Indiana Univ. Math. J., 40, 443, (1991) · Zbl 0836.35009
[31] Giga, Y., Gurtin, M.E.: A comparison theorem for crystalline evolutions in the plane. Quart. Appl. Math.LIV, 727-737 (1996) · Zbl 0862.35047
[32] Gurtin, M.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford, 1993 · Zbl 0787.73004
[33] Huisken, No article title, J. Differential Geom., 20, 237, (1984) · Zbl 0556.53001
[34] Huisken, No article title, J. Differential Geom., 31, 285, (1990) · Zbl 0694.53005
[35] Huisken, No article title, Acta Math., 183, 45, (1999) · Zbl 0992.53051
[36] Luckhaus, No article title, Calc. Var. Partial Differential Equations, 3, 253, (1995) · Zbl 0821.35003
[37] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. In: Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, 1993
[38] Taylor, No article title, Bull. Amer. Math. Soc. (N.S.), 84, 568, (1978) · Zbl 0392.49022
[39] Taylor, No article title, Acta Metall. Mater., 40, 1475, (1992)
[40] White, No article title, J. Amer. Math. Soc., 16, 123, (2003) · Zbl 1027.53078
[41] Yunger, J.: Facet stepping and motion by crystalline curvature. PhD. Thesis, Rutgers University 1998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.