zbMATH — the first resource for mathematics

Martingales and first passage times of AR(1) sequences. (English) Zbl 1148.60061
The exponential boundedness for the first passage time \(\tau_a\) over a level for an ergodic autoregressive sequence \[ X_n=\lambda X_{n-1}+\eta_n,\quad n\geq 1, \quad 0<\lambda<1, \] where \(\{\eta_n\}\) are i.i.d. random variables, is shown. By using martingale arguments under some conditions the exact representation of \(E\tau_a\) is obtained. This representation is used for obtaining the upper bound for \(E\tau_a\) in the general case.

60J55 Local time and additive functionals
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI arXiv
[1] DOI: 10.1080/15326340500294702 · Zbl 1083.60064 · doi:10.1080/15326340500294702
[2] Borovkov A.A., Applications of Mathematics (1973) · Zbl 0283.60029
[3] Doney R.A., Fluctuation Theory for Levy Processes (2005)
[4] Frisen M., Sequential Anal. 25 pp 379– (2006)
[5] DOI: 10.2307/1426747 · Zbl 0443.60037 · doi:10.2307/1426747
[6] M. Jacobsen, Exit times for a class of autoregressive sequences and random walks, Preprint No 5, Department of Applied Mathematics and Statistics, University of Copenhagen, 2007
[7] M. Jacobsen and A. Jensen, Exit times for a class of piecewise exponential Markov processes with two-sided jumps, Preprint No 5, Department of Applied Mathematics and Statistics, University of Copenhagen, 2006 · Zbl 1125.60080
[8] Jeffreys H., Methods of Mathematical Physics pp 406–, 3. ed. (1988)
[9] Kyprianou A.E., Introductory Lectures on Fluctuations of Lèvy Processes with Applications (2006) · Zbl 1104.60001
[10] DOI: 10.1137/1135035 · Zbl 0723.60044 · doi:10.1137/1135035
[11] Novikov A.A., Theory Probab. Appl. 48 pp 340– (2003)
[12] Novikov A.A., Proc. Steklov Math. Inst. 202 pp 169– (1993)
[13] DOI: 10.1016/j.probengmech.2004.04.005 · doi:10.1016/j.probengmech.2004.04.005
[14] DOI: 10.2307/2291599 · Zbl 0881.62105 · doi:10.2307/2291599
[15] Sukparungsee S., KMITL Sci. J.: Int. J. Sci. Appl. Sci. 6 pp 373– (2006)
[16] DOI: 10.2307/1426858 · Zbl 0417.60073 · doi:10.2307/1426858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.