# zbMATH — the first resource for mathematics

Trimming and likelihood: Robust location and dispersion estimation in the elliptical model. (English) Zbl 1148.62038
Summary: Robust estimators of location and dispersion are often used in the elliptical model to obtain an uncontaminated and highly representative subsample by trimming the data outside an ellipsoid based on the associated Mahalanobis distance. Here we analyze some one (or $$k$$)-step maximum likelihood estimators computed on a subsample obtained with such a procedure.
We introduce different models which arise naturally from the ways in which the discarded data can be treated, leading to truncated or censored likelihoods, as well as to a likelihood based on an only outliers gross errors model. Results on existence, uniqueness, robustness and asymptotic properties of the proposed estimators are included. A remarkable fact is that the proposed estimators generally keep the breakdown point of the initial (robust) estimators, but they could improve the rate of convergence of the initial estimator because our estimators always converge at rate $$n^{1/2}$$, independently of the rate of convergence of the initial estimator.

##### MSC:
 62H12 Estimation in multivariate analysis 62F35 Robustness and adaptive procedures (parametric inference) 62F12 Asymptotic properties of parametric estimators 62F10 Point estimation
robustbase
Full Text:
##### References:
 [1] Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory . Wiley, Chichester. · Zbl 0387.62011 [2] Bickel, P. J. (1982). On adaptive estimation. Ann. Statist. 10 647-671. · Zbl 0489.62033 [3] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive Estimation for Semiparametric Models . Springer, New York. · Zbl 0894.62005 [4] Butler, R. W., Davies, L. and Jhun, M. (1993). Asymptotics for the minimum covariance determinant estimator. Ann. Statist. 21 1385-1400. · Zbl 0797.62044 [5] Croux, C. and Haesbroeck, G. (1999). Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J. Multivariate Anal. 71 161-190. · Zbl 0946.62055 [6] Davies, L. (1987). Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15 1269-1292. · Zbl 0645.62057 [7] Davies, L. (1992). The Asymptotics of Rousseeuw’s minimum volume ellipsoid estimator. Ann. Statist. 20 1828-1843. · Zbl 0764.62046 [8] Davies, L. (1992). An efficient Fréchet differentiable high breakdown multivariate location and dispersion estimator. J. Multivariate Anal. 40 311-327. · Zbl 0748.62030 [9] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. JSTOR: · Zbl 0364.62022 [10] García-Escudero, L. A. and Gordaliza, A. (1999). Robustness properties of k -means and trimmed k -means. J. Amer. Statist. Assoc. 94 956-969. · Zbl 1072.62547 [11] García-Escudero, L. A. and Gordaliza, A. (2005). Generalized radius processes for elliptically contoured distributions. J. Amer. Statist. Assoc. 100 1036-1045. · Zbl 1117.62339 [12] Gervini, D. (2002). A robust and efficient adaptive reweighted estimator for multivariate location and scatter. J. Multivariate Anal. 84 116-144. · Zbl 1038.62051 [13] Gervini, D. and Yohai, V. J. (2002). A class of robust and fully efficient regression estimators. Ann. Statist. 30 583-616. · Zbl 1012.62073 [14] He, X. and Portnoy, S. (1992). Reweighted LS estimators converge at the same rate as the initial estimator. Ann. Statist. 20 2161-2167. · Zbl 0764.62043 [15] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical Estimation. Asymptotic Theory . Springer, New York. · Zbl 0389.62024 [16] Jurečkova, J. and Portnoy, S. (1987). Asymptotics for one-step M estimators in regression with application to combining efficiency and high breakdown point. Comm. Statist. Theory Methods 16 2187-2199. · Zbl 0656.62041 [17] Jurečkova, J. and Sen, P. K. (1990). Effect of the initial estimator on the asymptotic behavior of one-step M-estimator. Ann. Inst. Statist. Math. 42 345-357. · Zbl 0712.62024 [18] Lopuhaä, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and scatter. Ann. Statist. 27 1638-1665. · Zbl 0957.62017 [19] Lopuhaä, H. P. and Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Statist. 19 229-248. · Zbl 0733.62058 [20] Marazzi, A. and Yohai, V. J. (2004). Adaptively truncated maximum likelihood regression with asymmetric errors. J. Statist. Plann. Inference 122 271-291. · Zbl 1040.62057 [21] Maronna, R. A. (1976). Robust M-estimates of multivariate location and scatter. Ann. Statist. 4 51-67. · Zbl 0322.62054 [22] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics : Theory and Methods . Wiley, Chichester. · Zbl 1094.62040 [23] Mayo-Iscar, A. (2001). Estimación de parámetros en mezclas de poblaciones normales no homogéneas. Ph.D. thesis, Univ. Valladolid. [24] Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871-880. JSTOR: · Zbl 0547.62046 [25] Rousseeuw, P. J. and van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. J. Amer. Statist. Assoc. 85 633-651. [26] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.