zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive differential evolution algorithm for multiobjective optimization problems. (English) Zbl 1148.65042
Summary: A new adaptive differential evolution algorithm (ADEA) is proposed for multiobjective optimization problems. In ADEA, the variable parameter $F$ based on the number of the current Pareto-front and the diversity of the current solutions is given for adjusting search size in every generation to find Pareto solutions in mutation operator, and the select operator combines the advantages of the differential evolution algorithm with the mechanisms of Pareto-based ranking and crowding distance sorting. ADEA is implemented on five classical multiobjective problems, the results illustrate that ADEA efficiently achieves two goals of multiobjective optimization problems: find the solutions converge to the true Pareto-front and uniform spread along the front.

MSC:
65K05Mathematical programming (numerical methods)
90C29Multi-objective programming; goal programming
Software:
PAES
WorldCat.org
Full Text: DOI
References:
[1] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 182-197 (2002)
[2] Xue, F.; Sanderson, A. C.; Graves, R. J.: Pareto-based multi-objective differential evolution. Proceedings of the 2003 congress on evolutionary computation (CEC’2003) 2, 862-869 (2003)
[3] Knowles, J.; Corne, D.: The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. Proceedings of the 1999 congress on evolutionary computation, 98-105 (1999)
[4] Price, K. V.; Storn, R.: Differential evolution-a simple evolution strategy for fast optimization. Dr. dobb’s journal 22, 18-24 (1997)
[5] Abbass, H. A.; Sarker, R.; Newton, C.: PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. Proceedings of the congress on evolutionary computation 2001 (CEC’2001) 2, 971-978 (2001)
[6] Abbass, H. A.: The self-adaptive Pareto differential evolution algorithm. Proceedings of the congress on evolutionary computation (CEC’2002) 1, 831-836 (2002)
[7] Madavan, N. K.: Multiobjective optimization using a Pareto differential evolution approach. Proceeding of the congress on evolutionary computation (CEC’2002) 2, 1145-1150 (2002)
[8] Tea Rolič, Bogdan Filipic˘, in: C.A. Coello, et al. (Eds.), DEMO: Differential Evolution for Multiobjective Optimization, EMO 2005, LNCS 3410, 2005, pp. 520 -- 533. · Zbl 1109.68633
[9] J. Lampinen, A bibliography of differential evolution algorithm. <http://www2.lut.fi/ jlampine/debiblio.htm>.
[10] Goldberg, D. E.: Genetic algorithms in search, optimization, and machine learning. (1989) · Zbl 0721.68056