zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The decomposition method for initial value problems. (English) Zbl 1148.65081
Summary: Initial value problems for the heat, wave and plate equations in which the vectorial space variable varies in the whole $\Bbb R^d$ will be handled using the reliable decomposition method. The solutions are obtained in the form of rapidly convergent power series with elegantly computable terms showing that the new technique is reliable, powerful and promising.

65M70Spectral, collocation and related methods (IVP of PDE)
35K05Heat equation
35L05Wave equation (hyperbolic PDE)
35L55Higher order hyperbolic systems
74K20Plates (solid mechanics)
74S30Other numerical methods in solid mechanics
Full Text: DOI
[1] Adomian, G.: Nonlinear stochastic system theory and applications to physics. (1989) · Zbl 0659.93003
[2] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[3] Ngarhasta, N.; Some, B.; Abbaoui, K.; Cherruault, Y.: New numerical study of Adomian’s method applied to a diffusion model. Kybernetes 31, 61-75 (2002) · Zbl 1011.65073
[4] Cherruault, Y.; Saccomandi, G.; Some, B.: New results for convergence of Adomian’s method applied to integral equations. Math. comput. Modell. 16, 85-93 (1992) · Zbl 0756.65083
[5] Wazwaz, A. -M.; Gorguis, A.: Exact solutions for heat-like and wave-like equations with variable coefficients. Appl. math. Comput. 149, 15-29 (2004) · Zbl 1038.65103
[6] Soufyane, A.; Boulmalf, M.: Solution of linear and nonlinear parabolic equations by the decomposition method. Appl. math. Comput. 162, 687-693 (2005) · Zbl 1063.65111
[7] Biazar, J.; Amirtaimoori, A. R.: An analytic approximation to the solution of heat equation and restrictions of the method. Appl. math. Comput. 171, 740-747 (2005) · Zbl 1090.65118
[8] Zhao, C.: Algorithm and mechanization to Cauchy problem of parabolic equation. Appl. math. Comput. 169, 1038-1044 (2005) · Zbl 1080.65102
[9] Burggraf, O. R.: An exact solution of the inverse problem in heat conduction theory and applications. ASME J. Heat transfer 86C, 373-382 (1964)
[10] Al-Khaled, K.: Numerical solutions of the Laplace equation. Appl. math. Comput. 170, 1271-1283 (2005) · Zbl 1103.65336
[11] Biazar, J.; Islam, R.: Solution of wave equation by Adomian’s decomposition method and restrictions of the method. Appl. math. Comput. 149, 807-814 (2004) · Zbl 1038.65100
[12] Zhao, C.: Algorithmization formula and mechanization to Cauchy problem of high dimensional wave equation. Appl. math. Comput. 167, 957-963 (2005) · Zbl 1080.65101
[13] Lesnic, D.: The Cauchy problem for the wave equation using the decomposition method. Appl. math. Lett. 15, 697-701 (2002) · Zbl 1011.35036
[14] Chen, H.: The Poisson formula revisited. SIAM rev. 40, 353-355 (1998) · Zbl 0914.35031
[15] Wazwaz, A. -M.: A reliable technique for solving the wave equation in an infinite one-dimensional medium. Appl. math. Comput. 92, 1-7 (1998) · Zbl 0942.65107
[16] Boyce, W.; Diprima, R.: Elementary differential equations. (1991) · Zbl 0128.30601
[17] Lesnic, D.: The decomposition method for forward and backward time-dependent problems. J. comput. Appl. math. 147, 27-39 (2002) · Zbl 1013.65110
[18] Wazwaz, A. -M.: Necessary conditions for the appearance of noise terms in decomposition solution series. Appl. math. Comput. 81, 265-274 (1997) · Zbl 0882.65132
[19] Adomian, G.: Solving frontier problems modelled by nonlinear partial differential equations. Comput. math. Appl. 22, 91-94 (1991) · Zbl 0767.35016