zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Superconvergence of finite element method for the Signorini problem. (English) Zbl 1148.74044
Summary: We study the superconvergence of finite element method for frictionless Signorini problem. When approximated by bilinear finite elements, by virtue of information on contact zone, we can derive a superconvergence rate of $O(h^{\frac32})$ under a proper regularity assumption. Finally, a numerical test is given to verify our result.

74S05Finite element methods in solid mechanics
74M15Contact (solid mechanics)
65N12Stability and convergence of numerical methods (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Full Text: DOI
[1] Belgacem, F. B.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. math. 37, 1198-1216 (2000) · Zbl 0974.74055 · doi:10.1137/S0036142998347966
[2] Belgacem, F. B.; Renard, Y.: Hybrid finite element methods for the Signorini problem, Math. comp. 72, 1117-1145 (2003) · Zbl 1023.74043 · doi:10.1090/S0025-5718-03-01490-X
[3] Belhachmi, Z.; Belgacem, F. B.: Quadratic finite element approximation of the Signorini problem, Math. comp. 72, 83-104 (2003) · Zbl 1112.74446 · doi:10.1090/S0025-5718-01-01413-2
[4] Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods, (1994) · Zbl 0804.65101
[5] Brezzi, F.; Hager, W. W.; Raviart, P. A.: Error estimates for the element solution of variational inequalities, part I primal theory, Numer. math. 28, 431-443 (1977) · Zbl 0369.65030 · doi:10.1007/BF01404345
[6] Ciarlet, P. G.: The finite element method for elliptic problems, (1978) · Zbl 0383.65058
[7] Duvaut, G.; Lions, J. -L.: LES inéquations en mécanique et en physique, (1972) · Zbl 0298.73001
[8] Glowinski, R.; Lions, J. -L.; Trémolières, R.: Analyse numériques des inéquations variationnelles, tomes, Analyse numériques des inéquations variationnelles, tomes 1 (1976)
[9] Grisvard, P.: Elliptic problems in nonsmooth domains, Monographs and studies in mathematics 24 (1985) · Zbl 0695.35060
[10] Grisvard, P.: Singularities in boundary value problems, (1992) · Zbl 0766.35001
[11] Haslinger, J.; Hlavác?ek, I.: Contact between elastic bodies-2, finite element analysis, Aplikace matematiky 26, 263-290 (1981) · Zbl 0465.73144
[12] Haslinger, J.; Hlavác?ek, I.; Nec?as, J.: Numerical methods for unilateral problems in solid mechanics, Handbook of numerical analysis , Part 2 (1996)
[13] Hüeber, S.; Wohlmuth, B. I.: An optimal a priori error estimate for nonlinear multibody contact problems, SIAM J. Numer. math. 43, 156-173 (2005) · Zbl 1083.74047 · doi:10.1137/S0036142903436678
[14] Kikuchi, N.; Oden, J. T.: Contact problems in elasticity: A study of variational inequalities and finite element methods, (1988) · Zbl 0685.73002
[15] Kinderlehrer, D.; Stamppachia, G.: An introduction to variational inequalities and their applications, (1980)
[16] Lhalouani, K.; Sassi, T.: Noncom forming mixed variational formulation and domain decomposition for unilateral problems, East west J. Numer. math. 7, 23-30 (1999) · Zbl 0923.73061
[17] Lin, Q.; Lin, J.: Finite element methods: accuracy and improvement, (2006)
[18] Lin, Q.; Yan, N.: The construction and analysis of high efficient elements, (1996)
[19] Lin, Q.; Yan, N.; Zhou, A.: A rectangle test for interpolated finite elements, , 217-229 (1991)
[20] Moussaoui, M.; Khodja, K.: Régularité des solutions d’un problème mêlé Dirichlet--Signorini dans un domaine polygonal plan, Comm. partial differential equations 17, 805-826 (1992) · Zbl 0806.35049 · doi:10.1080/03605309208820864
[21] Scarpini, F.; Vivaldi, M. A.: Error estimates for the approximation of some unilateral problems, RAIRO modél. Math. anal. Numer. 11, 197-208 (1977) · Zbl 0358.65087
[22] Wang, J.: Superconvergence and extrapolation for mixed finite element methods on rectangular domains, Math. comp. 56, 447-503 (1991) · Zbl 0729.65084 · doi:10.2307/2008392
[23] Hua, D. Y.; Wang, L. H.: The noncom forming finite element method for Signorini problem, J. comput. Math. 25, 67-80 (2007) · Zbl 1142.65369
[24] Zhong, Z. H.: Finite element procedures for contact-impact problems, (1993)