zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
MHD boundary-layer flow due to a moving extensible surface. (English) Zbl 1148.76061
Summary: We consider a flow due to a moving extensible sheet that obeys a general stretching law. The sheet occupies the negative $x$-axis and is moving continually in the positive $x$-direction, in an incompressible viscous and electrically conducting fluid. The sheet somehow disappears in a sink that is located at $(x, y) = (0, 0)$. The governing system of partial differential equations is first transformed into a system of ordinary differential equations, and the transformed equations are solved numerically using a finite difference scheme, namely the Keller-box method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the flow near $x = 0$, where the velocity profiles show a reversed flow.

76W05Magnetohydrodynamics and electrohydrodynamics
76M55Dimensional analysis and similarity (fluid mechanics)
76M20Finite difference methods (fluid mechanics)
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Sakiadis BC (1961). Boundary layer behavior on continuous solid surfaces: I. The boundary layer equations for two-dimensional and axisymmetric flow. AIChE J 7: 26--28 · doi:10.1002/aic.690070108
[2] Sakiadis BC (1961). Boundary-layer behavior on continuous solid surfaces: II. The boundary-layer on a continuous flat surface. AIChE J 7: 221--225
[3] Gupta PS and Gupta AS (1977). Heat and mass transfer on a stretching sheet with suction and blowing. Can J Chem Engng 55: 744--746 · doi:10.1002/cjce.5450550619
[4] Dutta BK, Roy P and Gupta AS (1985). Temperature field in flow over a stretching sheet with uniform heat flux. Int Commun Heat Mass Transfer 12: 89--94 · doi:10.1016/0735-1933(85)90010-7
[5] Grubka LJ and Bobba KM (1985). Heat transfer characteristics of a continuous stretching surface with variable temperature. Trans ASME J Heat Transfer 107: 248--250 · doi:10.1115/1.3247387
[6] Kumari M, Takhar HS and Nath G (1990). MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Wärme- und Stoffübertr 25: 331--336 · doi:10.1007/BF01811556
[7] Liao S-J and Pop I (2004). On explicit analytic solutions of boundary-layer equations about flows in a porous medium or for a stretching wall. Int J Heat Mass Transfer 47: 75--85 · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[8] Nazar R, Amin N, Filip D and Pop I (2004). Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int J Engng Sci 42: 1241--1253 · Zbl 1211.76042 · doi:10.1016/j.ijengsci.2003.12.002
[9] Crane LJ (1970). Flow past a stretching plate. J Appl Math Phys (ZAMP) 21: 645--647 · doi:10.1007/BF01587695
[10] Banks WHH (1983). Similarity solution of the boundary layer equations for a stretching wall. J Mech Theor Appl 2: 375--392 · Zbl 0538.76039
[11] Magyari E and Keller B (1999). Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D: Appl Phys 32: 577--585 · doi:10.1088/0022-3727/32/5/012
[12] Magyari E and Keller B (2000). Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces. Eur J Mech B-Fluids 19: 109--122 · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[13] Magyari E, Ali ME and Keller B (2001). Heat and mass transfer characteristics of the self-similar boundary-layer flows induced by continuous surfaces stretched with rapidly decreasing velocities. Heat Mass Transfer 38: 65--74 · doi:10.1007/s002310000126
[14] Carragher P and Crane LJ (1982). Heat transfer on a continuous stretching sheet. J Appl Math Mech (ZAMM) 62: 564--565
[15] Kuiken HK (1981). On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small. IMA J Appl Math 27: 387--405 · Zbl 0472.76045 · doi:10.1093/imamat/27.4.387
[16] Shercliff JA (1965) A textbook of magnetohydrodynamic. Oxford Pergamon Press
[17] Cobble MH (1977). Magnetohydrodynamic flow with a pressure gradient and fluid injection. J Eng Math 11: 249--256 · Zbl 0363.76079 · doi:10.1007/BF01535969
[18] Cobble MH (1980). Magnetohydrodynamic flow for a non-Newtonian power-law fluid having a pressure gradient and fluid injection. J Eng Math 14: 47--55 · Zbl 0419.76002 · doi:10.1007/BF00042864
[19] Helmy KA (1994). Solution of the boundary layer equation for a power law fluid in magneto-hydrodynamics. Acta Mech 102: 25--37 · Zbl 0814.76088 · doi:10.1007/BF01178515
[20] Cebeci T and Bradshaw P (1988). Physical and computational aspects of convective heat transfer. Springer, New York · Zbl 0702.76003
[21] Ariel PD (1994). Hiemenz flow in hydromagnetics. Acta Mech 103: 31--43 · Zbl 0815.76092 · doi:10.1007/BF01180216
[22] Chiam TC (1995). Hydromagnetic flow over a surface stretching with a power-law velocity. Int J Engng Sci 33: 429--435 · Zbl 0899.76375 · doi:10.1016/0020-7225(94)00066-S