Pisarchik, A. N.; Zanin, M. Image encryption with chaotically coupled chaotic maps. (English) Zbl 1148.94431 Physica D 237, No. 20, 2638-2648 (2008). Summary: We present a novel secure cryptosystem for direct encryption of color images, based on chaotically coupled chaotic maps. The proposed cipher provides good confusion and diffusion properties that ensures extremely high security because of the chaotic mixing of pixels’ colors. Information is mixed and distributed over a complete image using a complex strategy that makes known plaintext attack unfeasible. The encryption algorithm guarantees the three main goals of cryptography: strong cryptographic security, short encryption/decryption time, and robustness against noise and other external disturbances. Due to the high speed, the proposed cryptosystem is suitable for application in real-time communication systems. Cited in 2 ReviewsCited in 21 Documents MSC: 94A60 Cryptography 68P25 Data encryption (aspects in computer science) 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory Keywords:chaotic cryptosystem; logistic map; image cipher PDF BibTeX XML Cite \textit{A. N. Pisarchik} and \textit{M. Zanin}, Physica D 237, No. 20, 2638--2648 (2008; Zbl 1148.94431) Full Text: DOI References: [1] Schneier, B., Applied Cryptography — Protocols, Algorithms, and Source Code (1996), C. John Wiley & Sons, Inc.: C. John Wiley & Sons, Inc. New York · Zbl 0853.94001 [2] Daemen, J.; Sand, B.; Rijmen, V., The Design of Rijndael: AES — The Advanced Encryption Standard (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 1065.94005 [3] Shanon, C. E., Communication theory of secrecy systems, Bell. Syst. Tech. J., 28, 4, 656-715 (1949) · Zbl 1200.94005 [4] Lian, S. G.; Sun, J.; Wang, Z., Security analysis of a chaos-based image encryption algorithm, Physica A, 351, 645-661 (2005) [5] Baptista, M. S., Cryptography with chaos, Phys. Lett. A, 240, 50-54 (1998) · Zbl 0936.94013 [6] Pareek, N. K.; Patidar, V.; Sud, K. K., Discrete chaotic cryptography using external key, Phys. Lett. A, 309, 75-82 (2003) · Zbl 1010.68063 [7] Huang, F.; Guan, Z. H., Cryptosystem using chaotic keys, Chaos Solitons Fractals, 23, 851-855 (2005) · Zbl 1068.94013 [8] Wei, J.; Liao, X.; Wong, K. W.; Xiang, T., A new chaotic cryptosystem, Chaos Solitons Fractals, 30, 143-152 (2006) [9] Fridrich, J., Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifurc. Chaos, 8, 6, 1259-1284 (1998) · Zbl 0935.94019 [10] Chen, G.; Mao, Y. B.; Chui, C. K., A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos Solitons Fractals, 12, 749-761 (2004) · Zbl 1049.94009 [11] Mao, Y. B.; Chen, G.; Lian, S. G., A novel fast image encryption scheme based on the 3D chaotic baker map, Int. J. Bifurc. Chaos, 14, 10, 3613-3624 (2004) · Zbl 1064.94509 [12] Xiang, T.; Liao, X.; Tang, G.; Chen, Y.; Wong, K. W., A novel block cryptosystem based on iterating a chaotic map, Phys. Lett. A, 349, 109-115 (2006) · Zbl 1195.81041 [13] Lian, S. G.; Sun, J.; Wang, Z., A block cipher baser on a suitable use of chaotic standard map, Chaos Solitons Fractals, 26, 1, 117-129 (2005) · Zbl 1093.37504 [14] Guan, Z. H.; Huang, F. J.; Guan, W. J., Chaos-based image encryption algorithm, Phys. Lett. A, 346, 153-157 (2005) · Zbl 1195.94056 [15] Wang, K.; Pei, W. J., On the security of 3D cat map based symmetric image encryption scheme, Phys. Lett. A, 343, 432-439 (2005) · Zbl 1194.81054 [16] Pisarchik, A. N.; Flores-Carmona, N. J.; Carpio-Valadez, M., Encryption and decryption of images with chaotic map lattices, Chaos, 16, 3 (2006), 033118- 1/6 · Zbl 1151.94560 [17] Pareek, N. K.; Patidar, V.; Sud, K. K., Image encryption using chaotic logistic map, Image Vis. Comput., 24, 9, 926-934 (2006) [18] Wong, K. W.; Ho, S. W.; Yung, C. K., A chaotic cryptography scheme for generating short ciphertext, Phys. Lett. A, 310, 67-73 (2003) · Zbl 1011.94013 [19] Wei, J.; Liao, X.; Wong, K. W.; Zhou, T., Cryptoanalysis of a cryptosystem using multiple one-dimensional chaotic maps, Commun. Nonlinear Sci. Numer. Simul., 12, 814-822 (2007) · Zbl 1169.94337 [20] Jacobson, M. V., Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys., 81, 39-88 (1981) · Zbl 0497.58017 [22] Banerjee, S.; Yorke, J. A.; Grebogi, C., Robust chaos, Phys. Rev. Lett., 80, 3049-3052 (1998) · Zbl 1122.37308 [23] Xiang, T.; Wong, K. W.; Liao, X., A novel symmetrical cryptosystem based on discretized two-dimensionla chaptic maps, Phys. Lett. A, 364, 252-258 (2007) [24] Kwok, H. S.; Tang, W. K.S., A fast image encryption system based on chaotic maps with finite prescision representation, Chaos Solitons Fractals, 32, 1518-1529 (2007) · Zbl 1127.94004 [25] Wong, K. W., A fast chaotic cryptographic scheme with dynamic look-up table, Phys. Lett. A, 310, 238-242 (2002) · Zbl 0995.94029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.