×

zbMATH — the first resource for mathematics

Isomorphisms of graded endomorphism rings of progenerators. (English. Russian original) Zbl 1149.16007
J. Math. Sci., New York 152, No. 4, 451-455 (2008); translation from Fundam. Prikl. Mat. 13, No. 1, 3-10 (2007).
Summary: We prove the analogue of M. L. Bolla’s theorem [J. Algebra 87, 261-281 (1984; Zbl 0554.16009)] that isomorphisms of graded endomorphism rings of progenerators are induced by the graded Morita equivalence.

MSC:
16D90 Module categories in associative algebras
16S50 Endomorphism rings; matrix rings
16W50 Graded rings and modules (associative rings and algebras)
Citations:
Zbl 0554.16009
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. N. Balaba, ”A graded version of Morita’s theorem,” in: Vth Symposium on the Theory of Rings, Algebras and Modules, IM SO AN SSSR, Novosibirsk (1982), pp. 10–11.
[2] I. N. Balaba, ”Morita equivalence of categories of graded modules,” Usp. Mat. Nauk, 42, No. 3 (255), 177–178 (1987). · Zbl 0629.16021
[3] M. L. Bolla, ”Isomorphisms between endomorphism rings of progenerators,” J. Algebra, 87, 261–281(1984). · Zbl 0554.16009
[4] E. C. Dade, ”Group-graded rings and modules,” Math. Z., 74, No. 3, 241–262 (1980) · Zbl 0439.16001
[5] S. Dascalescu, B. Ion, C. Nastasescu, and J. Rios Montes, ”Group gradings on full matrix rings,” J. Algebra, 220, 709–728 (1999). · Zbl 0947.16028
[6] A. del Rio, ”Graded rings and equivalence categories,” Comm. Algebra, 19, No. 3, 997–1012 (1991). · Zbl 0722.16020
[7] R. Gordon and E. L. Green, ”Graded Artinian algebras,” J. Algebra, 76, No. 1, 111–137 (1982). · Zbl 0491.16001
[8] C. Menini and C. Nastasescu, ”When is R-gr equivalent to the category of modules?” J. Pure Appl. Algebra, No. 3, 277–291 (1988). · Zbl 0657.16025
[9] C. Nastasescu and F. van Oystaeyen, Graded Ring Theory, North-Holland, Amsterdam (1982).
[10] M. V. Zaicev and S. K. Sehgal, ”Finite gradings of simple Artinian rings,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 21–24 (2001). · Zbl 1054.16032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.